精英家教网 > 高中数学 > 题目详情
已知实数x、y满足约束条件
x≥2
y≥2
x+y≤6
,则z=2x+4y的最大值为
20
20
分析:先画出可行域,结合z为目标函数纵截距四倍,平移直线0=2x+4y,发现其过(0,2)时z有最大值即可求出结论.
解答:解:画可行域如图,z为目标函数z=2x+4y,可看成是直线z=2x+4y的纵截距四倍,
画直线0=2x+4y,平移直线过A(2,4)点时z有最大值20
故答案为:20.
点评:本题考查线性规划问题,难度较小.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足约束条件
2x-y≤0
x-3y+5≥0
y≥1
z=(
1
2
)x+y-2
的最大值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足约束条件
x≥1
y≤2
x-y≤0
则z=2x-y的取值范围是(  )
A、[1,2]
B、[0,2]
C、[1,3]
D、[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足约束条件中
0≤x≤
2
y≤2
x≤
2
y
,则目标函数z=
2
x+y
的最大值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x、y满足约束条件
x+y≤3 
y≥1
x≥1
,则z=x2+y2的最小值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•眉山二模)已知实数x、y满足约束条件
x≥2
y≥2
x+y≤6
,则z=2x+y
的最大值为
10
10

查看答案和解析>>

同步练习册答案