精英家教网 > 高中数学 > 题目详情
3.等比数列{an}的前n项和为Sn,已知a1=1,a1,S2,5成等差数列,则数列{an}的公比q=2.

分析 由a1,S2,5成等差数列,可得2S2=a1+5,即可得出.

解答 解:∵a1=1,a1,S2,5成等差数列,∴2S2=a1+5,
∴2(1+q)=1+5,解得q=2.
故答案为:2.

点评 本题考查了等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设sin(π-θ)=$\frac{1}{3}$,则cos2θ=(  )
A.±$\frac{4\sqrt{2}}{9}$B.$\frac{7}{9}$C.-$\frac{4\sqrt{2}}{9}$D.-$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.运行如图所示的算法框图,输出的结果是(  )
A.-1B.0C.$\frac{1}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(0,3)=(  )
A.9B.16C.18D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设抛物线的顶点在原点,其焦点在x轴上,又抛物线上的点A(-1,a)与焦点F的距离为2,则a=(  )
A.4B.4或-4C.-2D.-2或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$f(x)=sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$满足$f(x+\frac{π}{2})=-f(x)$,若其图象向左平移$\frac{π}{6}$个单位后得到的函数为奇函数.
(1)求f(x)的解析式;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c-a)cosB=bcosA,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),则∠ABC等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,D为边BC上一点,BC=3BD,若AB=1,AC=2,则AD•BD的最大值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数y=f(x),x∈R是奇函数,其部分图象如图所示,则在(-1,0)上与函数f(x)的单调性相同的是(  )
A.$y=x+\frac{1}{x}$B.y=log2|x|
C.$y=\left\{{\begin{array}{l}{e^x}&{x≥0}\\{{e^{-x}}}&{x<0}\end{array}}\right.$D.y=cos(2x)

查看答案和解析>>

同步练习册答案