【题目】已知抛物线C的顶点在坐标原点,焦点在坐标轴上.
(1)若抛物线C经过点
,求C的标准方程;
(2)抛物线C的焦点
(m是大于零的常数),若过点F的直线与C交于![]()
两点,
,求
面积的最小值.
科目:高中数学 来源: 题型:
【题目】现安排6名同学前往4所学校进行演讲,要求甲、乙两同学不能前往同一个学校,每个学校都有人前往,每人只前往一个学校,则满足上述要求的不同安排方案数为________.(用数字作答)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点分别为
,离心率为
.设过点
的直线
与椭圆
相交于不同两点
,
周长为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点
,证明:当直线
变化时,总有TA与
的斜率之和为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在△ABC中,D是BC边上的一点,且AB=14,BD=6,∠ADC=
,
.
(Ⅰ)求sin∠DAC;
(Ⅱ)求AD的长和△ABC的面积.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先后2次抛掷一枚骰子,将得到的点数分别记为
,
.
(1)求直线
与圆
相切的概率;
(2)将
,
,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着国家综合国力的提升和科技的进步,截至2018年底,中国铁路运营里程达13,2万千米,这个数字比1949年增长了5倍;高铁运营里程突破2.9万千米,占世界高铁运营里程的60%以上,居世界第一位下表截取了2012--2016年中国高铁密度的发展情况(单位:千米/万平方千米).
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代码 | 1 | 2 | 3 | 4 | 5 |
高铁密度 | 9.75 | 11.49 | 17.14 | 20.66 | 22.92 |
已知高铁密度y与年份代码x之间满足关系式
(
为大于0的常数)若对
两边取自然对数,得到
,可以发现
与
线性相关.
(1)根据所给数据,求y关于x的回归方程(
保留到小数点后一位);
(2)利用(1)的结论,预测到哪一年高铁密度会超过30千米/平方千米.
参考公式设具有线性相关系的两个变量
的一组数据为
,
则回归方程
的系数:
,
.
参考数据:
,
,
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长均相等的正三棱柱
中,
为
的中点,
在
上,且
,则下述结论:①
;②
;③平面
平面
:④异面直线
与
所成角为
其中正确命题的个数为( )
![]()
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以坐标原点为极点,以
轴的非负半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
,直线
的参数方程为
(
为参数).
(1)点
在曲线
上,且曲线
在点
处的切线与直线:
垂直,求点
的直角坐标;
(2)设直线
与曲线
有且只有一个公共点,求直线
的斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com