精英家教网 > 高中数学 > 题目详情
设函数f(x)=xekx(k≠0),
(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.
解:(Ⅰ),f′(0)=1,f(0)=0,
曲线y=f(x)在点(0,f(0))处的切线方程为y=x。
(Ⅱ)由,得
若k>0,则当时,f′(x)<0,函数f(x)单调递减;
时,f′(x)>0,函数f(x)单调递增;
若k<0,则当时,f′(x)>0,函数f(x)单调递增;
时,f′(x)<0,函数f(x)单调递减;
(Ⅲ)由(Ⅱ)知,若k>0,则当且仅当,即k≤1时,函数f(x)在(-1,1)内单调递增;
若k<0,则当且仅当,即k≥-1时,函数f(x)在(-1,1)内单调递增;
综上可知,函数f(x)在区间(-1,1)内单调递增时,k的取值范围是[-1,0)∪(0,1]。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1+x1-x
e-ax

(Ⅰ)设a>0,讨论y=f(x)的单调性;
(Ⅱ)若对任意x∈(0,1)恒有f(x)>1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1+x1-x
e-ax

(1)写出定义域及f′(x)的解析式
(2)设a>0,讨论函数y=f(x)的单调性;
(3)若对任意x∈(0,1),恒有f(x)>1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北一模)设函数f(x)=
1+x1-x
e-ax

(1)写出定义域及f′(x)的解析式,
(2)设a>O,讨论函数y=f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源:2013年湖北新洲、红安、麻城一中高三上学期期末考文科数学试卷(解析版) 题型:解答题

 (本小题满分14分)

已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.

(1)当b=0时,若对x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;

(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.

①求证:x1>1>x2

②若当x≥x1时,关于x的不等式ax2-x+xe+1≤0恒成立,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
1+x
1-x
e-ax

(1)写出定义域及f′(x)的解析式
(2)设a>0,讨论函数y=f(x)的单调性;
(3)若对任意x∈(0,1),恒有f(x)>1成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案