¶ÔÓÚÊýÁÐ{an}£¬Èô´æÔÚÒ»¸ö³£ÊýM£¬Ê¹µÃ¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐ|an|¡ÜM£¬Ôò³Æ{an}ΪÓнçÊýÁУ®
£¨¢ñ£©ÅжÏan=2+sinnÊÇ·ñΪÓнçÊýÁв¢ËµÃ÷ÀíÓÉ£®
£¨¢ò£©ÊÇ·ñ´æÔÚÕýÏîµÈ±ÈÊýÁÐ{an}£¬Ê¹µÃ{an}µÄǰnÏîºÍSn¹¹³ÉµÄÊýÁÐ{Sn}ÊÇÓнçÊýÁУ¿Èô´æÔÚ£¬ÇóÊýÁÐ{an}µÄ¹«±ÈqµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨¢ó£©ÅжÏÊýÁÐan=
1
3
+
1
5
+
1
7
+¡­+
1
2n-1
(n¡Ý2)
ÊÇ·ñΪÓнçÊýÁУ¬²¢Ö¤Ã÷£®
£¨¢ñ£©1¡Üan=2+sinn¡Ü3£¬
¹Ê{an}ΪÓнçÊýÁС­£¨2·Ö£©
£¨¢ò£©É蹫±ÈΪq£¬µ±0£¼q£¼1ʱ£¬Sn=
a1(1-qn)
1-q
£¼
a1
1-q
£¬
ÔòÕýÊýÊýÁÐ{Sn}Âú×ã|Sn|£¼
a1
1-q
£¬¼´ÎªÓнçÊýÁУ»
µ±q=1ʱ£¬Sn=na1¡ú+¡Þ£¬¹ÊΪÎÞ½çÊýÁУ»
µ±q£¾1ʱ£¬Sn=a1+a2+¡­+an£¾na1¡ú+¡Þ£¬´ËʱΪÎÞ½çÊýÁУ®
×ÛÉÏ£ºµ±ÇÒ½öµ±0£¼q£¼1ʱ£¬{Sn}ΪÓнçÊýÁС­£¨6·Ö£©£®
£¨¢ó£©{an}ΪÎÞ½çÊýÁУ¬ÊÂʵÉÏan=
1
3
+
1
5
+
1
7
+¡­+
1
2n-1
£¾
1
4
+
1
6
+
1
8
+¡­+
1
2n

¡à2an£¾
1
3
+
1
4
+
1
5
+
1
6
+¡­+
1
2n-1
+
1
2n

¡à2a2n£¾
1
3
+
1
4
+
1
5
+
1
6
+¡­+
1
2•2n
=(
1
3
+
1
4
)+(
1
5
+
1
6
+
1
7
+
1
8
)+(
1
9
+¡­+
1
16
)+¡­+(
1
2n+1
+
1
2n+2
+¡­+
1
2n+2n
)
£¾
1
4
¡Á2+
1
8
¡Á4+
1
16
¡Á8+¡­+
1
2n¡Á2
¡Á2n=
n
2

¡àa2n£¾
n
4

¹Êµ±nÎÞÏÞÔö´óʱanÒ²ÎÞÏÞÔö´ó£¬
ËùÒÔ{an}Î޽硭£¨12·Ö£©£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚÊýÁÐ{an}£¬ÈôÂú×ãa1£¬
a2
a1
£¬
a3
a2
£¬¡­£¬
an
an-1
£¬¡­
ÊÇÊ×ÏîΪ1£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬Ôòa100µÈÓÚ£¨¡¡¡¡£©
A¡¢2100
B¡¢299
C¡¢25050
D¡¢24950

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×ãf£¨x£©=
log2(1-x)£¬x¡Ü0
f(x-1)-f(x-2)£¬x£¾0

£¨1£©¼ÆË㣺f£¨-1£©¡¢f£¨0£©¡¢f£¨1£©¡¢f£¨2£©£¬²¢Çó³öf£¨n+3£©Óëf£¨n£©£¬n¡ÊN*Âú×ãµÄ¹ØÏµÊ½£»
£¨2£©¶ÔÓÚÊýÁÐ{an}£¬Èô´æÔÚÕýÕûÊýT£¬Ê¹µÃan+T=an£¬Ôò³ÆÊýÁÐ{an}ΪÖÜÆÚÊýÁУ¬TΪÊýÁеÄÖÜÆÚ£¬Áîan=f(n) £¬ n¡ÊN*£¬Ö¤Ã÷£º{an}ΪÖÜÆÚÊýÁУ¬Ö¸³öËüµÄÖÜÆÚT£¬²¢Çóa2012µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•ÖØÇìһ죩¶ÔÓÚÊýÁÐ{an}£¬Èô´æÔÚÒ»¸ö³£ÊýM£¬Ê¹µÃ¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐ|an|¡ÜM£¬Ôò³Æ{an}ΪÓнçÊýÁУ®
£¨¢ñ£©ÅжÏan=2+sinnÊÇ·ñΪÓнçÊýÁв¢ËµÃ÷ÀíÓÉ£®
£¨¢ò£©ÊÇ·ñ´æÔÚÕýÏîµÈ±ÈÊýÁÐ{an}£¬Ê¹µÃ{an}µÄǰnÏîºÍSn¹¹³ÉµÄÊýÁÐ{Sn}ÊÇÓнçÊýÁУ¿Èô´æÔÚ£¬ÇóÊýÁÐ{an}µÄ¹«±ÈqµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨¢ó£©ÅжÏÊýÁÐan=
1
3
+
1
5
+
1
7
+¡­+
1
2n-1
(n¡Ý2)
ÊÇ·ñΪÓнçÊýÁУ¬²¢Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚÊýÁÐ{an}£¬Èô´æÔÚÈ·¶¨µÄ×ÔÈ»ÊýT£¾0£¬Ê¹µÃ¶ÔÈÎÒâµÄ×ÔÈ»Êýn¡ÊN*£¬¶¼ÓУºan+T=an³ÉÁ¢£¬Ôò³ÆÊýÁÐ{an}ÊÇÒÔTΪÖÜÆÚµÄÖÜÆÚÊýÁУ®
£¨1£©¼ÇSn=a1+a2+a3+¡­+an£¬Èô{an}Âú×ãan+2=an+1-an£¬ÇÒS2=1007£¬S3=2010£¬ÇóÖ¤£ºÊýÁÐ{an}ÊÇÒÔ6ΪÖÜÆÚµÄÖÜÆÚÊýÁУ¬²¢ÇóS2009£»
£¨2£©Èô{an}Âú×ãa1=p¡Ê[0£¬ 
1
2
)
£¬ÇÒan+1=-2an2+2an£¬ÊÔÅжÏ{an}ÊÇ·ñΪÖÜÆÚÊýÁУ¬ÇÒ˵Ã÷ÀíÓÉ£»
£¨3£©ÓÉ£¨1£©µÃÊýÁÐ{an}£¬ÓÖÉèÊýÁÐ{bn}£¬ÆäÖÐbn=an+2n+
2009
2n
£¬ÎÊÊÇ·ñ´æÔÚ×îСµÄ×ÔÈ»Êýn£¨n¡ÊN*£©£¬Ê¹µÃ¶ÔÒ»ÇÐ×ÔÈ»Êým¡Ýn£¬¶¼ÓÐbm£¾2009£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©¶ÔÓÚÊýÁÐ{an}£¬Èô´æÔÚ³£ÊýT¡Ý0£¬Ê¹µÃ¶ÔÓÚÈÎÒân¡ÊN*£¬¾ùÓÐ|an|¡ÜT£¬Ôò³Æ{an}ΪÓнçÊýÁУ®ÒÔÏÂÊýÁÐ{an}ΪÓнçÊýÁеÄÊÇ
 
£»£¨Ð´³öÂú×ãÌõ¼þµÄËùÓÐÐòºÅ£©
¢Ùan=n-2¢Úan=
1
n+2
¢Û
an
an+1
=2£¬a1=1

£¨2£©ÊýÁÐ{an}ΪÓнçÊýÁУ¬ÇÒÂú×ãan+1=-an2+2an£¬a1=t£¨t£¾0£©£¬ÔòʵÊýtµÄȡֵ·¶Î§Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸