精英家教网 > 高中数学 > 题目详情

若a>0,b>0且ln(a+b)=0,则数学公式的最小值是


  1. A.
    数学公式
  2. B.
    1
  3. C.
    4
  4. D.
    8
C
分析:依题意,可求得a+b=1,利用基本不等式即可求得答案.
解答:∵a>0,b>0且ln(a+b)=0,
∴a+b=1,
+=(a+b)(+)=1+1++≥4(当且仅当a=b=时取“=”).
∴则的最小值是4.
故选C.
点评:本题考查基本不等式,求得a+b=1是关键,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点是F2(2,0),且b=
3
a

(1)求双曲线C的方程;
(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.
(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的两条渐近线互相垂直,且C的焦点到其渐近线的距离为
2
,过点E(1,0)且倾斜角为锐角的直线l交C于A、B两点.
(I)求双曲线C的方程;
(II)若
EA
=t
EB
,且1<t<3
,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1、F2,点P在双曲线的右支上,直线l为过P且切于双曲线的直线,且平分∠F1PF2,过O作与直线l平行的直线交PF1于M点,则MP=a,利用类比推理:若椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,点P在椭圆上,直线l为过P且切于椭圆的直线,且平分∠F1PF2的外角,过O作与直线平行的直线交PF1于M点,则|MP|的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津模拟)设椭圆C:
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1、F2,上顶点为A,在x轴负半轴上有一点B,满足
BF1
=
F1F2
,且AB⊥AF2
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若过A、B、F2三点的圆恰好与直线x-
3
y-3=0
相切,求椭圆C的方程;                      
(Ⅲ)在(Ⅱ)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,若点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0且
1
a
+
2
b
=1
,求:
(1)a+b的最小值;
(2)若直线l与x轴、y轴分别交于A(a,0)、B(0,b),求VABO(O为坐标原点)面积的最小值.

查看答案和解析>>

同步练习册答案