精英家教网 > 高中数学 > 题目详情

【题目】已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程mx2﹣2x+1=0有实数解”.若“p∨q”为真,“¬q”为假,则实数m的取值范围.

【答案】解:∵直线x+y﹣m=0与圆(x﹣1)2+y2=1相交, ∴(1,0)到x+y﹣m=0的距离小于1,
<1,解得:1﹣ <1+
故p:m∈(1﹣ ,1+ );
m=0时,方程mx2﹣2x+1=0有实数解,
m≠0时,若方程mx2﹣2x+1=0有实数解,
则△=4﹣4m≥0,解得:m≤1,
故q:m∈(﹣∞,1],
若“p∨q”为真,“¬q”为假,
则p真q真或p假q真,
故m∈(﹣∞,1]
【解析】分别求出p,q为真时的m的范围,根据p∨q”为真,“¬q”为假,得到q真即可求出m的范围.
【考点精析】解答此题的关键在于理解复合命题的真假的相关知识,掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x2﹣3x+3)ex的定义域为[﹣2,t],设f(﹣2)=m,f(t)=n.
(1)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;
(2)求证:m<n;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|1<2x﹣1<7},集合B={x|x2﹣2x﹣3<0}.
(1)求A∩B;
(2)求R(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B∪(UA)=( )
A.{5}
B.{1,2,5}
C.{1,2,3,4,5}
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1,则函数y=loga| |的图象大致为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ) 计算:2 ﹣( +lg +( ﹣1)lg1+(lg5)2+lg2lg50
(Ⅱ)已知x +x =3,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面ABB1A1 , ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点.请建立适当的坐标系,求解下列问题: (Ⅰ)求证:异面直线A1D与BC互相垂直;
(Ⅱ)求二面角(钝角)D﹣A1C﹣A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数 内任取两个实数p,q,且p≠q,不等式 恒成立,则a的取值范围是(
A.[﹣1,0]
B.[﹣1,+∞)
C.[0,3]
D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知首项为1的正项数列{an}满足ak+1=ak+ai(i≤k,k=1,2,…,n﹣1),数列{an}的前n项和为Sn
(1)比较ai与1的大小关系,并说明理由;
(2)若数列{an}是等比数列,求 的值;
(3)求证:

查看答案和解析>>

同步练习册答案