精英家教网 > 高中数学 > 题目详情

(本小题满分14分) 椭圆C的中心为坐标原点O,焦点在y轴上,离心率e = ,椭圆上的点到焦点的最短距离为1-e, 直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且.(1)求椭圆方程;  (2)若,求m的取值范围.

(本小题满分14分)

 解:(1)设C:+=1(a>b>0),设c>0,c2a2b2,由条件知a-c=,=,

a=1,bc=,

C的方程为:y2+=1      ………………………………………4分

(2)由=λ得-=λ(-),(1+λ)=+λ

λ+1=4,λ=3             ………………………………………………6分

l与椭圆C交点为Ax1y1),Bx2y2

得(k2+2)x2+2kmx+(m2-1)=0

Δ=(2km2-4(k2+2)(m2-1)=4(k2-2m2+2)>0 (*)

x1x2=, x1x2=   ………………………………………………9分

∵=3 ∴-x1=3x2

消去x2,得3(x1x22+4x1x2=0,∴3()2+4=0

整理得4k2m2+2m2k2-2=0   ………………………………………………11分

m2=时,上式不成立;m2≠时,k2=,

λ=3 ∴k≠0 ∴k2=>0,∴-1<m<- 或 <m<1

容易验证k2>2m2-2成立,所以()成立

即所求m的取值范围为(-1,-)∪(,1)     ………………………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案