精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-acos2x-
3
asin2x+2a+b,(a>0)在x∈[0,
π
2
]
时,有f(x)的值域为[-5,1].
(1)求a,b的值;
(2)说明函数y=f(x)的图象可以由y=cos2x的图象经过怎样的变换得到;
(3)若g(t)=at2+bt-3,t∈[-1,0],求g(t)的最小值.
(1)由题意得,
f(x)=-acos2x-
3
asin2x+2a+b=-2acos(2x-
π
3
)+2a+b

0≤x≤
π
2
得,-
π
3
≤2x-
π
3
3

-
1
2
≤cos(2x-
π
3
)≤1

又∵a>0,
f(x)max=3a+b=1
f(x)min=b=-5
,解得
a=2
b=-5

(2)由(1)知,
f(x)=-4cos(2x-
π
3
)-1=4cos(2x+
3
)
-1,
∴由y=cos2x的图象先向左平移
π
3
个单位,然后横坐标不变、纵坐标变为原来的4倍,
再向下平移1个单位,即可得到函数y=f(x)的图象.
(3)由(1)知,
g(t)=2t2-5t-3=2(t-
5
4
)2-
49
8

∴当t∈[-1,0]时,g(t)单调递减,
∴g(t)min=g(0)=-3.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案