精英家教网 > 高中数学 > 题目详情
已知椭圆E:(a>b>0)的左、右焦点分别为F1,F2,点P是x轴上方椭圆E上的一点,且PF1⊥F1F2
(1)求椭圆E的方程和P点的坐标;
(2)判断以PF2为直径的圆与以椭圆E的长轴为直径的圆的位置关系;
(3)若点G是椭圆C:(m>n>0)上的任意一点,F是椭圆C的一个焦点,探究以GF为直径的圆与以椭圆C的长轴为直径的圆的位置关系。
解:(1)∵P在椭圆E上,
∴2a=|PF1|+|PF2|=4,a=2
∵PF1⊥F1F2
∴ |F1F2|2=|PF2|2-|PF1|2=
2c=2,c=1,
∴b2=3
所以椭圆E的方程是
∵F1(-1,0),F2(1,0),
∵PF1⊥F1F2

(2)线段PF2的中点
∴以为圆心,PF2为直径的圆M的方程为

圆M的半径
以椭圆E的长轴为直径的圆的方程为:x2+y2=4,圆心为O(0,0),半径为R=2,
圆M与圆O的圆心距为
所以两圆相内切。
(3)以GF为直径的圆与以椭圆C的长轴为直径的圆相内切,
设F′
是椭圆C的另一个焦点,其长轴长为2m(m>0),
∵点G是椭圆C上的任意一点,F是椭圆C的一个焦点,
则有|GF|+|CF'|=2m,
则以GF为直径的圆的圆心是M,圆M的半径为
以椭圆C的长轴为直径的圆O的半径R=m,
两圆圆心O,M分别是FF'和FG的中点,
∴两圆心间的距离R-r
所以两圆内切。
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年河南省洛阳市高三上学期期末考试理科数学 题型:解答题

(本小题满分12分)

    已知椭圆E:(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上

   (1)求椭圆E的方程;

   (2)设l1l2是过点G(,0)且互相垂直的两条直线,l1交E于A, B两点,l2交E于C,D两点,求l1的斜率k的取值范围;

   (3)在(2)的条件下,设AB,CD的中点分别为M,N,试问直线MN是否恒过定点?

若经过,求出该定点坐标;若不经过,请说明理由。

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆E:数学公式(a,b>0)与双曲线G:x2-y2=4,若椭圆E的顶点恰为双曲线G的焦点,椭圆E的焦点恰为双曲线G的顶点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在一个以原点为圆心的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A、B,且数学公式?若存在请求出该圆的方程,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年浙江省领航高考数学冲刺试卷1(理科)(解析版) 题型:解答题

如图,已知椭圆E:(a>b>0),焦点为F1、F2,双曲线G:x2-y2=m(m>0)的顶点是该椭圆的焦点,设P是双曲线G上异于顶点的任一点,直线PF1、PF2与椭圆的交点分别为A、B和C、D,已知三角形ABF2的周长等于,椭圆四个顶点组成的菱形的面积为
(1)求椭圆E与双曲线G的方程;
(2)设直线PF1、PF2的斜率分别为k1和k2,探求k1和k2的关系;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年山东省高考数学仿真押题试卷02(理科)(解析版) 题型:解答题

已知椭圆E:(a>b>0)的左、右焦点分别为F1、F2,离心率e=,点D(0,1)在且椭圆E上,
(Ⅰ)求椭圆E的方程;
(Ⅱ)设过点F2且不与坐标轴垂直的直线交椭圆E于A、B两点,线段AB的垂直平分线与x轴交于点G(t,0),求点G横坐标的取值范围.
(Ⅲ)试用表示△GAB的面积,并求△GAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2011年上海市崇明县高考数学一模试卷(文理合卷)(解析版) 题型:解答题

如图,已知椭圆E:(a>b>0),焦点为F1、F2,双曲线G:x2-y2=m(m>0)的顶点是该椭圆的焦点,设P是双曲线G上异于顶点的任一点,直线PF1、PF2与椭圆的交点分别为A、B和C、D,已知三角形ABF2的周长等于,椭圆四个顶点组成的菱形的面积为
(1)求椭圆E与双曲线G的方程;
(2)设直线PF1、PF2的斜率分别为k1和k2,探求k1和k2的关系;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案