精英家教网 > 高中数学 > 题目详情
7.命题“?x0∈(0,+∞),lnx0=x0-1”的否定是(  )
A.?x∈(0,+∞),lnx≠x-1B.?x∉(0,+∞),lnx=x-1
C.?x0∈(0,+∞),lnx0≠x0-1D.?x0∉(0,+∞),lnx0=x0-1

分析 根据特称命题否定的方法,结合已知中的原命题,可得答案.

解答 解:命题“?x0∈(0,+∞),lnx0=x0-1”的否定是“?x∈(0,+∞),lnx≠x-1”
故选:A

点评 本题考查的知识点是命题的否定,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知命题p:x2+mx+1=0有两个不等的实根,命题q:4x2+4(m-2)x+1=0无实根,若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法不正确的是(  )
A.命题“若a>b,则ac>bc”是真命题
B.命题“若a2+b2=0,则a,b全为0”是真命题
C.命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”
D.命题“若a=0,则ab=0”的逆否命题是“若ab≠0,则a≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若扇形的弧长为6cm,圆心角为2弧度,则扇形的面积为9cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在一张长为2a米,宽为a米(a>2)的矩形铁皮的四个角上,各剪去一个边长是x米(0<x≤1)的小正方形,折成一个无盖的长方体铁盒,设V(x)表示铁盒的容积.
(1)试写出V(x)的解析式;
(2)记y=$\frac{V(x)}{x}$,当x为何值时,y最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.双曲线2x2-y2=8的实半轴长与虚轴长之比为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥平面ABCD,∠BAD=$\frac{π}{3}$,AD=2,DE=$\sqrt{3}$.
(Ⅰ)异面直线AE与DC所成的角余弦值;
(Ⅱ)求证平面AEF⊥平面CEF;
(Ⅲ)在线段AB取一点N,当二面角N-EF-C的大小为60°时,求|AN|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a>0,a≠1且loga3>loga2,若函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为1.
(1)求a的值;
(2)解不等式${log_{\frac{1}{2}}}({x-1})>{log_{\frac{1}{2}}}({a-x})$;
(3)求函数g(x)=|logax-1|的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题“?x0∈R,x02+x0-1<0”的否定是(  )
A.?x∈R,x2+x-1≥0B.?x∈R,x2+x-1<0
C.?x0∈R,x02+x0-1≥0D.?x0∈R,x02+x0-1>0

查看答案和解析>>

同步练习册答案