分析 (1)由条件利用两个向量共线的性质求得tan2B的值,再根据△ABC为锐角三角形,B的值.
(2)若b=1,则由余弦定理、基本不等式求得 ac 的最大值,可得△ABC面积为$\frac{1}{2}$ac•sinB,求得它的最大值.
解答 解:(1)∵向量$\overrightarrow{m}$=(2sin(A+C),$\sqrt{3}$),$\overrightarrow{n}$=(cos2B,2cos$\frac{B}{2}$-1),且向量$\overrightarrow{m}$∥$\overrightarrow{n}$.
∴2sin(A+C)(2cos2$\frac{B}{2}$-1)-$\sqrt{3}$cos2B=0,即 2sinBcosB=$\sqrt{3}$cos2B,
∴tan2B=$\frac{sin2B}{cos2B}$=$\sqrt{3}$.
再根据△ABC为锐角三角形,可得0<B<$\frac{π}{2}$,∴2B=$\frac{π}{3}$,B=$\frac{π}{6}$.
(2)若b=1,则由余弦定理可得 b2=1=a2+c2-2ac•cosB≥2ac-$\sqrt{3}$ac,
解得 ac≤$\frac{1}{2-\sqrt{3}}$=2+$\sqrt{3}$,当且仅当a=c时,取等号,
故△ABC面积的最大值为$\frac{1}{2}$ac•sinB=$\frac{1}{2}$(2+$\sqrt{3}$)•$\frac{1}{2}$=$\frac{2+\sqrt{3}}{4}$.
点评 本题主要考查两个向量共线的性质,正弦定理和余弦定理、基本不等式的应用,考查了转化思想和计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 7 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{25}$=1(x≠0) | B. | $\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{144}$=1(x≠0) | ||
| C. | $\frac{{x}^{2}}{169}$+$\frac{{y}^{2}}{25}$=1(y≠0) | D. | $\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{25}$=1(y≠0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (8,+∞) | B. | (4,+∞) | C. | (-∞,8) | D. | (-∞,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\sqrt{2}$-1) | B. | ($\frac{\sqrt{2}}{2}$,1) | C. | (0,$\frac{\sqrt{2}}{2}$) | D. | ($\sqrt{2}$-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com