精英家教网 > 高中数学 > 题目详情

一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数的分布列.

 

【答案】

 

1

0

-1

【解析】

试题分析:欲写出ξ的分布列,要先求出ξ的所有取值,以及ξ取每一值时的概率.

设黄球的个数为,由题意知,绿球个数为,红球个数为,盒中的总数为

   ∴ 

 所以从该盒中随机取出一球所得分数的分布列为

1

0

-1

考点:本题主要考查离散性随机变量及其分布列。

点评:这是离散性随机变量及其分布列种基本题型,应从分析实际背景出发,运用古典概型计算相应概率,求得分布列。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球的一半,现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中随机取出一球所得分数ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

16.(2)解(1)当a=1,b=-2时,g(x)=f(x)-2,把f(x)图象向下平移两个单位就可得到g(x)图象,

这时函数g(x)只有两个零点,所以(1)不对

(2)若a=-1,-2<b<0,则把函数f(x)作关于x轴对称图象,然后向下平移不超过2个单位就可得到g(x)图象,这时g(x)有超过2的零点

(3)当a<0时, y=af(x)根据定义可断定是奇函数,如果b≠0,把奇函数y=af(x)图象再向上(或向下)平移后才是y=g(x)=af(x)+b的图象,那么肯定不会再关于原点对称了,肯定不是奇函数;当b=0时才是奇函数,所以(3)不对。所以正确的只有(2)

一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半,现在从该盒中随机取出一球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数Y的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球的一半,现从该盒中随机取出一个球.若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中随机取出一球所得分数ξ的分布列.

查看答案和解析>>

科目:高中数学 来源:高考数学一轮复习必备(第90课时):第十章 排列、组合和概率-随机变量的分布列、期望和方差(解析版) 题型:解答题

一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球的一半,现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中随机取出一球所得分数ξ的分布列.

查看答案和解析>>

同步练习册答案