精英家教网 > 高中数学 > 题目详情
数列{an}和数列{bn}(n∈N*)由下列条件确定:
(1)a1<0,b1>0;
(2)当k≥2时,ak与bk满足如下条件:当
ak-1+bk-1
2
≥0时,ak=ak-1,bk=
ak-1+bk-1
2
;当
ak-1+bk-1
2
<0时,ak=
ak-1+bk-1
2
,bk=bk-1
解答下列问题:
(Ⅰ)证明数列{ak-bk}是等比数列;
(Ⅱ)记数列{n(bk-an)}的前n项和为Sn,若已知当a>1时,
lim
n→∞
n
an
=0,求
lim
n→∞
Sn

(Ⅲ)m(n≥2)是满足b1>b2>…>bn的最大整数时,用a1,b1表示n满足的条件.
分析:(Ⅰ)分情况讨论,并分别做差ak-bk,从而可证明等比数列.
(Ⅱ)利用第一问的结论:数列{ak-bk}是等比数列,求出数列{n(bn-an)}的前n项和为Sn,再求极限得解.
(Ⅲ)如果n(n≥2)是满足b1>b2>…>bn的最大整数,利用已知条件,从而推出bn通项.再利用bn的性质推出因此n是满足
an+bn
2
<0的最小整数.进而可推得n满足的条件(用a1,b1表示).
解答:解:(Ⅰ)当
ak-1+bk-1
2
≥0时,bk-ak=
ak-1+bk-1
2
-ak-1=
1
2
(bk-1ak-1),
ak-1+bk-1
2
<0时,bk-ak=bk-1-
ak-1+bk-1
2
=
1
2
(bk-1ak-1),
所以不论哪种情况,都有bk-ak=
1
2
(bk-1ak-1),又显然b1-a1>0,故数列{ak-bk}是等比数列(4分)

(Ⅱ)由(Ⅰ)知,bn-an=(b1-a1)=(
1
2
)
n-1
,故n(bn-an)=(b1-a1)•
n
2n-1

Sn=(b1-a1)(1+
2
2
+
3
22
+…+
n
2n-2
+
n
2n-1
),所以
1
2
Sn=(b1-a1)(1+
2
22
+
3
23
…+
n
2n-1
+
n
2n
),
所以
1
2
Sn=(b1-a1)(1+
1
2
+
1
23
+…+
1
2n-1
+
n
2n
),Sn=(b1-a1)[4(1-
1
2n
)-
2n
2n
](7分)
又当a>1时
lim
n→∞
n
an
=0,
lim
n→∞
Sn=4(b1-a1).(8分)

(Ⅲ)当b1>b2>…>bn(n≥2)时,bk≠bk-1(2≤k≤n),由(2)知
ak-1+bk-1
2
<0不成立,
ak-1+bk-1
2
≥0,从而对于2≤k≤n,有ak=ak-1,bk=
ak-1+bk-1
2
,于是an=an-1=…=a1
故bn=a1+(b1-a1(
1
2
)
n -1
(10分)
an+bn
2
=
1
2
{a1+[a1+(b1-a1(
1
2
)
n+1
]}若
an+bn
2
≥0,则bn+1=
an+bn
2

bn+1-bn={a1+(b1-a1(
1
2
)
n
}-{a1+(b1-a1(
1
2
)
n-1
}=-(b1-a1(
1
2
)
n
<0,
所以bn+1<bn=,这与n是满足b1>b2>…>bn(n≥2)的最大整数矛盾.
因此n是满足
an+bn
2
<0的最小整数.(12分)
an+bn
2
<0?
b1-a1
-a1
<2n?log2
a1-b1
a1
<n,
因而n是满足log2
a1-b1
a1
<n的最小整数.(14分)
点评:本题是等比数列的综合题,考查等比数列证明,极限求法,不等式等有关知识,要求能力比较高,值得好好研究学习.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}为前n项和为Sn,a1=2,数列{ Sn+2}是以2为公比的等比数列.
(1)求an
(2)抽去数列{an}中的第1项,第4项,第7项,…,第3n-2项,余下的项顺序不变,组成一个新数列{cn},若{cn}的前n项和为Tn,求证:
12
5
Tn+1
Tn
11
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)数列{an},若对任意的k∈N*,满足
a2k+1
a2k-1
=q1
a2k+2
a2k
=q2
 &(q1q2
是常数且不相等),则称数列{an}为“跳跃等比数列”,则下列关于“跳跃等比数列”的命题:
(1)若数列{an}为“跳跃等比数列”,则满足bk=a2k•a2k-1(k∈N*)的数列{bn}是等比数列; 
(2)若数列{an}为“跳跃等比数列”,则满足bk=
a2k
a2k-1
(k∈N*)
的数列{bn}是等比数列; 
(3)若数列{an}为等比数列,则数列{(-1)nan}是“跳跃等比数列”;  
(4)若数列{an}为等比数列,则满足bn=
ak+1ak
,&n=2k-1
ak+1
ak
,&n=2k
(k∈N*)
的数列{bn}是“跳跃等比数列”;
(5)若数列{an}和{bn}都是“跳跃等比数列”,则数列{an•bn}也是“跳跃等比数列”;其中正确的命题个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于项数都为m的数列{an}和{bn},记bk为a1,a2,…,ak(k=1,2,…,m)中的最小值,给出下列命题:
①若数列{bn}的前5项依次为5,5,3,3,1,则a4=3;
②若数列{bn}是递减数列,则数列{an}也是递减数列;
③数列{bn}可能是先递减后递增的数列;
④若数列{an}是递增数列,则数列{bn}是常数列.
其中,是真命题的为(  )
A、①④B、①③C、②③D、②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(理)数列{an},若对任意的k∈N*,满足
a2k+1
a2k-1
=q1
a2k+2
a2k
=q2
 &(q1q2
是常数且不相等),则称数列{an}为“跳跃等比数列”,则下列关于“跳跃等比数列”的命题:
(1)若数列{an}为“跳跃等比数列”,则满足bk=a2k•a2k-1(k∈N*)的数列{bn}是等比数列; 
(2)若数列{an}为“跳跃等比数列”,则满足bk=
a2k
a2k-1
(k∈N*)
的数列{bn}是等比数列; 
(3)若数列{an}为等比数列,则数列{(-1)nan}是“跳跃等比数列”;  
(4)若数列{an}为等比数列,则满足bn=
ak+1ak
,&n=2k-1
ak+1
ak
,&n=2k
(k∈N*)
的数列{bn}是“跳跃等比数列”;
(5)若数列{an}和{bn}都是“跳跃等比数列”,则数列{an•bn}也是“跳跃等比数列”;其中正确的命题个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=x,g(x)=ln(1+x),h(x)=.

(1)证明当x>0时,恒有f(x)>g(x);

(2)当x>0时,不等式g(x)>(k≥0)恒成立,求实数k的取值范围;

(3)在x轴正半轴上有一动点D(x,0),过D作x轴的垂线依次交函数f(x)、g(x)、h(x)的图象于点A、B、C,O为坐标原点.试将△AOB与△BOC的面积比表示为x的函数m(x),并判断m(x)是否存在极值,若存在,求出极值;若不存在,请说明理由.

(文)已知函数f(x)=,x∈(0,+∞),数列{an}满足a1=1,an+1=f(an);数列{bn}满足b1=1,bn+1=,其中Sn为数列{bn}的前n项和,n=1,2,3,….

(1)求数列{an}和数列{bn}的通项公式;

(2)设Tn=,证明Tn<3.

查看答案和解析>>

同步练习册答案