精英家教网 > 高中数学 > 题目详情
(2012•徐汇区一模)设函数y=f(x)与函数y=f(f(x))的定义域交集为D.若对任意的x∈D,都有f(f(x))=x,则称函数f(x)是集合M的元素.
(1)判断函数f(x)=-x+1和g(x)=2x-1是否是集合M的元素,并说明理由;
(2)设函数f(x)=log2(1-2x),试求函数f(x)的反函数f-1(x),并证明f-1(x)∈M;
(3)若f(X)=
axx+b
∈M
(a,b为常数且a>0),求使f(x)<1成立的x的取值范围.
分析:(1)欲判断函数f(x)=-x=1,lg(x)=2x-1是否是M的元素,只须验证对任意x∈R,f(f(x))=x是否成立;
(2)先求出函数f(x)的反函数f-1(x),然后直接根据题中的定义判断f-1(x)是否是M的元素即可;
(3)根据定义,问题可转换为f2(x)=f(f(x))=x对一切定义域中x恒成立,建立等式,从而可得:(a+b)x2-(a2-b2)x=0恒成立,即a+b=0,故可解不等式,即可求使f(x)<1成立的x的范围.
解答:解:(1)因为对任意x∈R,f(f(x))=-(-x+1)+1=x,所以f(x)=-x+1∈M(2分)
因为g(g(x))=2(2x-1)-1=4x-3不恒等x,所以g(x)∉M
(2)因为f(x)=log2(1-2x),所以x∈(-∞,0),f(x)∈(-∞,0)…(5分)
函数f(x)的反函数f-1(x)=log2(1-2x),(x<0)…(6分)
又因为f-1(f-1(x))=log2(1-2f-1(x))=log2(1-(1-2x))=x…(9分)
所以f-1(x)∈M…(10分)
(3)因为f(x)=
ax
x+b
∈M
,所以f(f(x))=x对定义域内一切x恒成立,
a•
ax
x+b
ax
x+b
+b
=x

即解得:(a+b)x2-(a2-b2)x=0恒成立,故a+b=0…(12分)
由f(x)<1,得
ax
x-a
<1即
(a-1)x+a
x-a
<0
…(13分)
若a=1则
1
x-1
<0,所以x∈(-∞,1)…(14分)
若0<a<1,则
x-
a
1-a
x-a
>0
且a<
a
1-a
,所以x∈(-∞,a)∪(
a
1-a
,+∞)…(16分)
若a>1,则
x-
a
1-a
x-a
<0
且a>
a
1-a
,所以x∈(
a
1-a
,a)…(18分)
点评:本题主要考查了函数恒成立问题和反函数,函数值的求法等,是一道创新型的题目,还考查了学生的创新意识,同时考查了运算求解的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•徐汇区一模)从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是
1
5
1
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐汇区一模)已知cos(π+θ)=
4
5
,则cos2θ=
7
25
7
25

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐汇区一模)已知各项为正数的等比数列{an}满足:a7=a6+2a5,若存在两项am、an使得
aman
=2
2
a1
,则
1
m
+
4
n
的最小值为
11
6
11
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐汇区一模)由9个正数组成的矩阵
a11a12a13
a21a22a23
a31a32a33
中,每行中的三个数成等差数列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比数列,给出下列判断:①第2列a12,a22,a32必成等比数列;②第1列a11,a21,a31不一定成等比数列;③a12+a32≥a21+a23;④若9个数之和等于9,则a22≥1.其中正确的个数有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐汇区一模)若(x+
12x
)
n
的展开式中前三项的系数依次成等差数列,则展开式中x4项的系数为
7
7

查看答案和解析>>

同步练习册答案