精英家教网 > 高中数学 > 题目详情
已知各项均为正数的数列﹛an﹜,对于任意正整数n,点(an,sn)在曲线y=
1
2
(x2+x)

(1)求证:数列﹛an﹜是等差数列;
(2)若数列﹛bn﹜满足bn=
1
anan+2
,求数列﹛bn﹜的前n项和Tn
分析:(1)由点(an,sn)在曲线y=
1
2
(x2+x)
上,知Sn=
1
2
(an2+an)
,故Sn-1=
1
2
an-12+an-1),n≥2,从而得an=Sn-Sn-1=
1
2
[(an2+an)-(an-12+an-1)],所以an-an-1=1.由此能够证明数列﹛an﹜是等差数列.
(2))由Sn=
1
2
(an2+an)
,解得a1=1,由an-an-1=1.知an=1+(n-1)=n,故bn=
1
anan+2
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)
,由此利用裂项求和法能求出数列﹛bn﹜的前n项和.
解答:解:(1)∵各项均为正数的数列﹛an﹜,对于任意正整数n,点(an,sn)在曲线y=
1
2
(x2+x)
上,
Sn=
1
2
(an2+an)
,①
∴Sn-1=
1
2
an-12+an-1),n≥2,②
①-②,得an=Sn-Sn-1=
1
2
[(an2+an)-(an-12+an-1)]
an-12+an-1=an2-an
an2-an-12=an+an-1
∴an-an-1=1.
∴数列﹛an﹜是等差数列.
(2)∵Sn=
1
2
(an2+an)

a1=
1
2
(a12+a1)
,解得a1=1,a1=0(舍),
∵an-an-1=1.
∴an=1+(n-1)=n,
∴bn=
1
anan+2
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

∴数列﹛bn﹜的前n项和
Tn=b1+b2+b3+…+bn
=
1
2
(1-
1
3
)+
1
2
(
1
2
-
1
4
)
+
1
2
1
3
-
1
5
)+…+
1
2
(
1
n
-
1
n+2
)

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2

=
3
4
-
1
2n+2
-
1
2n+4
点评:本题考查数列的性质和应用,等差关系的确定,等比数列的前n项和等.解题时要认真审题,注意计算能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较数学公式数学公式的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:青岛二模 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:《第2章 数列》、《第3章 不等式》2010年单元测试卷(陈经纶中学)(解析版) 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:2012年高考复习方案配套课标版月考数学试卷(二)(解析版) 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较的大小,并加以证明.

查看答案和解析>>

同步练习册答案