精英家教网 > 高中数学 > 题目详情
(2013•黄浦区二模)函数f(x)=lg(4-2x)的定义域为
(-∞,2)
(-∞,2)
分析:有对数型函数的真数大于0解一元一次不等式求函数的定义域.
解答:解:要使原函数有意义,则4-2x>0,解得x<2.
所以原函数的定义域为(-∞,2).
故答案为(-∞,2).
点评:本题考查了函数的定义域及其求法,函数的定义域就是使函数解析式有意义的自变量x的取值集合,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•黄浦区二模)已知f(x)=4-
1
x
,若存在区间[a,b]⊆(
1
3
,+∞)
,使得{y|y=f(x),x⊆[a,b]}=[ma,mb],则实数m的取值范围是
(3,4)
(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄浦区二模)已知点P(x,y)的坐标满足
x-y+1≥0
x+y-3≥0
x≤2
,O为坐标原点,则|PO|的最小值为
3
2
2
3
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄浦区二模)若复数z满足
.
z-1
9z
.
=0
,则z的值为
±3i
±3i

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄浦区二模)在正△ABC中,若AB=2,则
AB
AC
=
2
2

查看答案和解析>>

同步练习册答案