£¨2013•Ì©°²¶þÄ££©ÒÑÖªÍÖÔ²E£º
x2
a2
+
y2
b2
 
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬µãP£¨x1£¬y1£©ÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬ÇÒ|PF1|+|PF2|=4£¬ÍÖÔ²µÄÀëÐÄÂÊe=
1
2

£¨I£©ÇóÍÖÔ²EµÄ±ê×¼·½³Ì£»
£¨II£©Ö±ÏßPF1½»ÍÖÔ²EÓÚÁíÒ»µãQ£¨x1£¬y2£©£¬ÍÖÔ²ÓÒ¶¥µãΪA£¬Èô
AP
AQ
=3£¬ÇóÖ±ÏßPF1µÄ·½³Ì£»
£¨III£©¹ýµãM£¨
1
4
x1
£¬0£©×÷Ö±ÏßPF1µÄ´¹Ïߣ¬´¹×ãΪN£¬µ±x1±ä»¯Ê±£¬Ï߶ÎPNµÄ³¤¶ÈÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çëд³öÕâ¸ö¶¨Öµ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨¢ñ£©ÓÉÍÖÔ²¶¨ÒåµÃµ½2a=4£¬ÇóµÃa=2£¬ÔÙÓÉÀëÐÄÂÊÇó³öc£¬½áºÏb2=a2-c2Çó³öb£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©¾­·ÖÎö¿ÉÖªÖ±ÏßPF1µÄбÂÊ´æÔÚÇв»µÈÓÚ0£¬Éè³öÖ±Ïß·½³Ì£¬ºÍÍÖÔ²·½³ÌÁªÁ¢ºó»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÓɸùÓëϵÊý¹ØϵÇó³öx1+x2£¬x1x2£¬´úÈë
AP
AQ
=3ÕûÀíÇóµÃkµÄÖµ£¬ÔòÖ±ÏßPF1µÄ·½³Ì¿ÉÇó£»
£¨¢ó£©·ÖPF1µÄбÂÊ´æÔںͲ»´æÔÚÁ½ÖÖÇé¿öÌÖÂÛ£¬Ð±Âʲ»´æÔÚʱֱ½ÓÇóÏ߶ÎPNµÄ³¤¶È£¬Ð±ÂÊ´æÔÚʱ£¬ÓÃÁ½µãʽÇó³öPF1µÄбÂʲ¢Ð´³öÖ±Ïß·½³Ì£¬Óɵ㵽ֱÏߵľàÀ빫ʽд³öMNµÄ³¤¶È£¬Æ½·½ºóת»¯Îªº¬x1µÄ±í´ïʽ£¬Çó³ö|PM|2Óɹ´¹É¶¨ÀíµÃµ½|PN|2£¬Ôò|PN|¿ÉÇó£®
½â´ð£º½â£º£¨¢ñ£©ÓÉ|PF1|+|PF2|=4£¬µÃ2a=4£¬ËùÒÔa=2£¬
ÓÖe=
c
a
=
1
2
£¬Ôòc=1£¬ËùÒÔb2=a2-c2=4-1=3£®
ËùÒÔËùÇóµÄÍÖÔ²EµÄ·½³ÌΪ
x2
4
+
y2
3
=1
£»
£¨¢ò£©ÓÉÍÖÔ²·½³ÌÖªF1£¨-1£¬0£©£¬A£¨2£¬0£©£®
µ±PF1ÓëxÖᴹֱʱ£¬Ö±Ïß·½³ÌΪx=-1£¬´úÈëÍÖÔ²·½³Ì½âµÃP(-1£¬
3
2
)
£¬Q(-1£¬-
3
2
)
£®
AP
AQ
=(-3£¬
3
2
)•(-3£¬-
3
2
)=
27
4
¡Ù3£®
ËùÒÔÖ±ÏßPF1µÄбÂÊ´æÔÚÇÒ²»Îª0£¬ÉèбÂÊΪk£¬
ÔòÖ±ÏßPF1µÄ·½³ÌΪy=k£¨x+1£©£®
ÓÉ
y=k(x+1)
x2
4
+
y2
3
=1
£¬µÃ£¨3+4k2£©x2+8k2x+4k2-12=0£®
x1+x2=
-8k2
3+4k2
£¬x1x2=
4k2-12
3+4k2
£®
ÓÉ
AP
AQ
=£¨x1-2£¬y1£©•£¨x2-2£¬y2£©=3£¬
µÃx1x2-2(x1+x2)+4+k2(x1+1)(x2+1)
=(k2+1)x1x2+(k2-2)(x1+x2)+k2+4=3
ËùÒÔ(k2+1)•
4k2-12
3+4k2
+(k2-2)•
-8k2
3+4k2
+k2+4

=
-4k4+8k2-12+4k4+19k2+12
3+4k2
=
27k2
3+4k2
=3
£®
¼´9k2=3+4k2£¬ËùÒÔk=¡À
15
15
£®
ËùÒÔÖ±ÏßPF1µÄ·½³ÌΪy=¡À
15
15
(x+1)
£»
£¨¢ó£©PNµÄ³¤¶ÈΪ¶¨Öµ
3
2
£®
µ±PF1µÄбÂʲ»´æÔÚʱ£¬¼´x1=-1ʱ£¬F1ÓëNÖغϣ¬´Ëʱ|PN|=
3
2
£®
µ±PF1µÄбÂÊ´æÔÚʱ£¬¼´x1¡Ù-1ʱ£¬Ð±ÂÊk=
y1
x1+1
£®
¹ÊÖ±ÏßPF1µÄ·½³ÌΪy=
y1
x1+1
(x+1)
£¬¼´y1x-£¨x1+1£©y+y1=0£®
ÓÖM£¨
1
4
x1£¬0
£©£¬ËùÒÔ|MN|=
|
x1y1
4
+y1|
y12+(x1+1)2

ÓÖ
x12
4
+
y12
3
=1
£¬ËùÒÔy12=3-
3
4
x12
£¬
´Ó¶ø|MN|2=
(3-
3
4
x12)(
x1
4
+1)2
3-
3
4
x12+(x1+1)2
=
(3-
3
4
x12)(
x1
4
+1)2
1
4
x12+2x1+4

=
(3-
3
4
x12)(
x1
4
+1)2
4(
x1
4
+1)2
=
3
4
-
3
16
x12
£®
ÓÖ|PM|2=
9
16
x12+y12
=
9
16
x12+3-
3
4
x12=3-
3
16
x12
£¬
ËùÒÔ|PN|2=|PM|2-|MN|2=3-
3
4
£¬ËùÒÔ|PN|=
3
2
£®
µãÆÀ£º±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÁËƽÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㣬¿¼²éÁËÖ±ÏߺÍԲ׶ÇúÏߵĹØϵ£¬¿¼²éÁË·ÖÀàÌÖÂÛµÄÊýѧ˼Ïë·½·¨ºÍÊýѧת»¯Ë¼Ïë·½·¨£¬¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊÇÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ì©°²¶þÄ££©ÈôÇúÏßf£¨x£©=acosxÓëÇúÏßg£¨x£©=x2+bx+1ÔÚ½»µã£¨0£¬m£©´¦Óй«ÇÐÏߣ¬Ôòa+b=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ì©°²¶þÄ££©ÒÑÖªµÈ²îÊýÁÐ{an}µÄÊ×Ïîa1=3£¬ÇÒ¹«²îd¡Ù0£¬ÆäÇ°nÏîºÍΪSn£¬ÇÒa1£¬a4£¬a13·Ö±ðÊǵȱÈÊýÁÐ{bn}µÄb2£¬b3£¬b4£®
£¨¢ñ£©ÇóÊýÁÐ{an}Óë{bn}µÄͨÏʽ£»
£¨¢ò£©Ö¤Ã÷
1
3
¡Ü
1
S1
+
1
S2
+¡­+
1
Sn
£¼
3
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ì©°²¶þÄ££©ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðÊÇa£¬b£¬c£¬ÈôsinB=2sinC£¬a2-b2=
3
2
bc
£¬ÔòA=
2
3
¦Ð
2
3
¦Ð
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ì©°²¶þÄ££©ÏÂÁÐÑ¡ÏîÖУ¬Ëµ·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ì©°²¶þÄ££©¹ýµãP£¨1£¬-2£©µÄÖ±Ïßl½«Ô²x2+y2-4x+6y-3=0½Ø³ÉÁ½¶Î»¡£¬ÈôÆäÖÐÁÓ»¡µÄ³¤¶È×î¶Ì£¬ÄÇôֱÏßlµÄ·½³ÌΪ
x-y-3=0
x-y-3=0
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸