科目:高中数学 来源: 题型:
已知f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0,若f(x)≤|f(
)|对一切
x∈R恒成立,且f(
)>0,则f(x)的单调递增区间是
A.[kπ-
,kπ+
](k∈Z) B.[kπ+
,kπ+
](k∈Z)
C.[kπ,kπ+
](k∈Z) D.[kπ-
,kπ](k∈Z)
查看答案和解析>>
科目:高中数学 来源: 题型:
是两个定点,点
为平面内的动点,且
(
且
),点
的轨迹围成的平面区域的面积为
,设
(
且
)则以下判断正确的是( )
A.
在
上是增函数,在
上是减函数B.
在
上是减函数,在
上是减函数
C.
在
上是增函数,在
上是增函数D.
在
上是减函数,在
上是增函数
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数
是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).
(1)求实数m的值,并写出区间D;(2)若底数
,试判断函数
在定义域D内的单调性,并说明理由;
(3)当
(
,a是底数)时,函数值组成的集合为
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
函数f(x)= 2sin(2x+
)-cos(
-2x)+ cos(2x+
),给出下列4个命题,其中正确命题的序号是 。
①直线x=
是函数图像的一条对称轴;
②函数f(x)的图像可由函数y=
sin2x的图像向左平移
个单位而得到;
③在区间[
,
]上是减函数;④若
,则
是
的整数倍;
查看答案和解析>>
科目:高中数学 来源: 题型:
给出以下命题: ① 存在实数x使sinx + cosx =
;② 若α、β是第一象限角,且α>β,则 cosα<cosβ;
③ 函数y=
的最小正周期是T=
;④ 若cosαcosβ=1,则sin(α+β)=0;其中正确命题的序号是 。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com