精英家教网 > 高中数学 > 题目详情
(2013•广州一模)(坐标系与参数方程选讲选做题)
在极坐标系中,定点A(2,
3
2
π)
,点B在直线ρcosθ+
3
ρsinθ=0
上运动,当线段AB最短时,点B的极坐标为
(1,
11π
6
)
(1,
11π
6
)
分析:将直线ρcosθ+
3
ρsinθ=0化为一般方程,再利用线段AB最短可知直线AB与已知直线垂直,设出直线AB的方程,联立方程求出B的坐标,从而求解.
解答:解:∵x=ρcosθ,y=ρsinθ,代入直线ρcosθ+
3
ρsinθ=0,
可得x+
3
y=0…①,
∵在极坐标系中,定点A(2,
2
),
∴在直角坐标系中,定点A(0,-2),
∵动点B在直线x+
3
y=0上运动,
∴当线段AB最短时,直线AB垂直于直线x+
3
y=0,
∴kAB=
3

设直线AB为:y+2=
3
x,即y=
3
x-2…②,
联立方程①②求得交点B(
3
2
,-
1
2
),
∴ρ=
x2+y2
=1,tanθ=
y
x
=-
3
,∴θ=
11π
6

故答案为(1,
11π
6
)
点评:此题主要考查极坐标与一般方程之间的转化,是一道基础题,注意极坐标与一般方程的关系:ρ=
x2+y2
,tanθ=
y
x
,x=ρcosθ,y=ρsinθ.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•广州一模)
1
0
cosx
dx=
sin1
sin1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知经过同一点的n(n∈N*,n≥3)个平面,任意三个平面不经过同一条直线.若这n个平面将空间分成f(n)个部分,则f(3)=
8
8
,f(n)=
n2-n+2
n2-n+2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)函数f(x)=
2-x
+ln(x-1)
的定义域为
(1,2]
(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,点M为PC的中点.
(1)求证:PA∥平面BMD;
(2)求证:AD⊥PB;
(3)若AB=PD=2,求点A到平面BMD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知n∈N*,设函数fn(x)=1-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
,x∈R

(1)求函数y=f2(x)-kx(k∈R)的单调区间;
(2)是否存在整数t,对于任意n∈N*,关于x的方程fn(x)=0在区间[t,t+1]上有唯一实数解?若存在,求t的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案