精英家教网 > 高中数学 > 题目详情
(2013•临沂二模)如图,AD⊥平面ABC,AD∥CE,AC=AD=AB=1,∠BAC=90°,凸多面体ABCED的体积为
12
,F为BC的中点.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:平面BDE⊥平面BCE.
分析:(Ⅰ)先求CE的长,再取BE的中点G,连结GF,GD,证明四边形ADGF为平行四边形,可得AF∥DG,利用线面平行的判定,即可证明AF∥平面BDE;
(Ⅱ)先证明AF⊥面BCE,根据DG∥AF,可得DG⊥面BCE,利用面面垂直的判定,即可证明平面BDE⊥平面BCE.
解答:证明:(Ⅰ)∵AD⊥平面ABC,AC?面ABC,AB?面ABC,
∴AD⊥AC,AD⊥AB,
∵AD∥CE,∴CE⊥AC
∴四边形ACED为直角梯形.…(1分)
又∵∠BAC=90°,∴AB⊥AC,∴AB⊥面ACED.…(2分)
∴凸多面体ABCED的体积V=
1
3
SACED•AB
=
1
3
×
1
2
×(1+CE)×1×1=
1
2

∴CE=2.…(3分)
取BE的中点G,连结GF,GD,则GF∥EC,GF=
1
2
CE=1,
∴GF∥AD,GF=AD,四边形ADGF为平行四边形,
∴AF∥DG.…(5分)
又∵GD?面BDE,AF?面BDE,
∴AF∥平面BDE.…(7分)
(Ⅱ)∵AB=AC,F为BC的中点,∴AF⊥BC.…(8分)
由(Ⅰ)知AD⊥平面ABC,AD∥GF,∴GF⊥面ABC.
∵AF?面ABC,∴AF⊥GF.…(9分)
又BC∩GF=F,∴AF⊥面BCE.…(10分)
又∵DG∥AF,∴DG⊥面BCE.…(11分)
∵DG?面BDE,∴面BDE⊥面BCE.…(12分)
点评:本题考查线面平行、面面垂直,考查几何体体积的计算,正确运用线面平行、面面垂直的判定方法是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•临沂二模)已知函数f(x)=elnx,g(x)=lnx-x-1,h(x)=
1
2
x2

(Ⅰ)求函数g(x)的极大值.
(Ⅱ)求证:存在x0∈(1,+∞),使g(x0)=g(
1
2
)

(Ⅲ)对于函数f(x)与h(x)定义域内的任意实数x,若存在常数k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,则称直线y=kx+b为函数f(x)与h(x)的分界线.试探究函数f(x)与h(x)是否存在“分界线”?若存在,请给予证明,并求出k,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)函数y=esinx(-π≤x≤π)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)已知定义在R上的函数y=f(x)对任意的x都满足f(x+1)=-f(x),当-1≤x<1时,f(x)=x3,若函数g(x)=f(x)-loga|x|至少6个零点,则a取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)已知x∈R,ω>0,
u
=(1,sin(ωx+
π
2
)),
v
=(cos2ωx,
3
sinωx)函数f(x)=
u
v
-
1
2
的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在区间[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是(  )

查看答案和解析>>

同步练习册答案