精英家教网 > 高中数学 > 题目详情
10.函数f(x)的定义域为D,若存在闭区间[a,b]⊆D,使得函数f(x)满足:①f(x)在[a,b]内是单调函数;②f(x)在[a,b]上的值域为[2a,2b],则称区间[a,b]为y=f(x)的“倍值区间”.下列函数中存在“倍值区间”的有①②④
①f(x)=x2(x≥0);   
②f(x)=2x(x∈R);
③f(x)=$\frac{4x}{{{x^2}+1}}$(x≥0);
④$f(x)={log_a}({a^x}-\frac{1}{8})(a>0,a≠1)$.

分析 利用“倍值区间”的意义,只要方程f(x)=2x在定义域内存在两个不同实数根即可得出.

解答 解:①假设函数f(x)存在“倍值区间”[a,b],由于x≥0,∴函数f(x)在[a,b]上单调递增,令x2=2x,解得x=0,2,∴[0,2]是函数f(x)的“倍值区间”;
同理可得:②存在“倍值区间”[1,2];③不存在“倍值区间”.
④假设函数f(x)存在“倍值区间”[a,b],令$lo{g}_{a}({a}^{x}-\frac{1}{8})$=2x,化为8(ax2-8ax+1=0,∵△=64-32=32>0,解得ax=$\frac{2±\sqrt{2}}{4}$,因此x有两个不同的实数值满足方程.∴假设正确.
综上可得:只有①②④存在“倍值区间”.
故答案为:①②④.

点评 本题考查了系新定义“倍值区间”、方程的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=sinx+$\sqrt{3}$cosx.
(1)求f(x)的最小正周期和振幅;
(2)在给出的方格纸上用五点作图法作出f(x)在一个周期内的图象.
(3)求函数f(x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过原点且倾斜角为60°的直线与圆x2+y2-4y=0相交,则圆的半径为2直线被圆截得的弦长为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列各组中的函数图象相同的是(  )
A.f(x)=1,g(x)=x0B.f(x)=1,g(x)=$\frac{x}{x}$
C.f(x)=$\frac{(x+3)^{2}}{x+3}$,g(x)=(x+3)(x+3)0D.f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x,x>0}\\{-x,x<0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若α=20°,β=25°,则(1+tanα)(1+tanβ)的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex-x2-ax.
(I)若函数f(x)的图象在x=0处的切线方程为y=2x+b,求a,b的值;
(Ⅱ)若函数f(x)在R上是增函数,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)的定义域为R,若存在常数k>0,使|f(x)|≤$\frac{k}{2015}$|x|对一切实数x均成立,则称f(x)为“海宝”函数.给出下列函数:
①f(x)=x2;②f(x)=sinx+cosx;③f(x)=$\frac{x}{{x}^{2}+x+1}$;④f(x)=3x+1
其中f(x)是“海宝”函数的序号为③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在等腰梯形ABCD中,AB∥CD,AB=BC=AD=2,CD=4,E为边DC的中点.如图1.将△ADE沿AE折起到△AEP位置,连PB、PC,点Q是棱AE的中点,点M在棱PC上,如图2.
(1)若PA∥平面MQB,求PM:MC;
(2)若平面AEP⊥平面ABCE,点M是PC的中点,求三棱锥A-MQB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图给出的是计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{10}$的值的一个流程图,其中判断框内应填入的条件是(  )
A.i>5B.i<5C.i>10D.i<10

查看答案和解析>>

同步练习册答案