精英家教网 > 高中数学 > 题目详情

已知圆C:,其中为实常数.

(1)若直线l:被圆C截得的弦长为2,求的值;

(2)设点,0为坐标原点,若圆C上存在点M,使|MA|=2 |MO|,求的取值范围.

 

【答案】

(1);(2).

【解析】

试题分析:(1)圆C的圆心为,半径为3,由此可得圆心到直线的距离.

再由点到直线的距离公式得:解之即得.

(2)显然满足的M点也形成一轨迹,由可得M点轨迹方程为.所以点M在以D(-1,0)为圆心,2为半径的圆上.

又点M在圆C上,所以圆C与圆D有公共点,从而,由此即得的取值范围.

试题解析:(1)由圆的方程知,圆C的圆心为,半径为3                     1分

设圆心C到直线的距离为,因为直线被圆C截得的弦长为2,所以

所以.

再由点到直线的距离公式得:,解之得             5分

(2)设,由得:   7分

所以点M在以D(-1,0)为圆心,2为半径的圆上.

又点M在圆C上,所以圆C与圆D有公共点,从而             9分

,解得

                     .11分

的取值范围为.            12分

考点:直线与圆的方程.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-a)2+(y-a-1)2=9,其中a为实常数.
(1)若直线l:x+y-3=0被圆C截得的弦长为2,求a的值;
(2)设点A(3,0),0为坐标原点,若圆C上存在点M,使|MA|=2|MO|,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年上海市普陀区高考数学一模试卷(文科)(解析版) 题型:解答题

如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源:2010年上海市普陀区高考数学一模试卷(理科)(解析版) 题型:解答题

如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

同步练习册答案