精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的奇函数fx),当x≥0时,fx)=x2x

1)求函数fx)的解析式;

2)若函数gxx≠0),求证:函数gx)在(0+∞)单调递增.

【答案】(1)fx.(2)证明见解析

【解析】

1)设x0,则﹣x0,则f(﹣x)=x2+x,利用函数的奇偶性即可求解.

2)根据函数单调性定义即可证明.

1)若x0,则﹣x0

f(﹣x)=x2+x

fx)是奇函数,∴f(﹣x)=x2+x=﹣fx),

fx)=﹣x2x

fx

2)证明:当x0时,gxx1

0x1x2

gx1)﹣gx2)=x1x2x1x21),

0x1x2

x1x20x1x20

gx1)﹣gx2)<0,即gx1)<gx2),

则函数gx)在(0+∞)为增函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于函数的性质描述,正确的是__________.的定义域为;②的值域为;③的图象关于原点对称;④在定义域上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的周期是.

1)求的单调递增区间及对称轴方程;

2)求上的最值及其对应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农业合作社生产了一种绿色蔬菜共吨,如果在市场上直接销售,每吨可获利万元;如果进行精加工后销售,每吨可获利万元,但需另外支付一定的加工费,总的加工(万元)与精加工的蔬菜量(吨)有如下关系:设该农业合作社将(吨)蔬菜进行精加工后销售,其余在市场上直接销售,所得总利润(扣除加工费)为(万元).

(1)写出关于的函数表达式;

(2)当精加工蔬菜多少吨时,总利润最大,并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,且当x≥0时,f(x)=.

(1)求f(x)的解析式;

(2)判断f(x)的单调性;

(3)若对任意的t∈R,不等式f(k-3t2)+f(t2+2t)≤0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的定义域;

(2)判断的奇偶性并给予证明;

(3)求关于x的不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数.

1)已知的解集为,求实数的值;

2)已知,设是关于的方程的两根,且,求实数的值;

3)已知满足,且关于的方程的两实数根分别在区间内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且

(1)求的值;

(2)画出图像,并写出单调递增区间(不需要说明理由);

(3)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足,其中为常数.已知销售价格为7/千克时,每日可售出该商品11千克.

1)求的值;

2)若该商品成本为5/千克,试确定销售价格值,使商场每日销售该商品所获利润最大.

查看答案和解析>>

同步练习册答案