精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=-1,且Sn=2an+n,(Sn为{an}前n项和),则a6=(  )
A、-63B、-62
C、-31D、-32
考点:数列递推式
专题:等差数列与等比数列
分析:由已知条件推导出{an-1}是首项为-2,公比为2的等比数列,由此能求出a6
解答: 解:∵数列{an}满足a1=-1,且Sn=2an+n,(Sn为{an}前n项和),
∴an=Sn-Sn-1=2an-2an-1+1,n≥2,
∴an=2an-1-1,
∴an-1=2(an-1-1),
an-1
an-1-1
=2,a1-1=-2,
∴{an-1}是首项为-2,公比为2的等比数列,
an-1=-2×2n-1=-2n
an=-2n+1
∴a6=-26+1=-63.
故选:A.
点评:本题考查数列的第6项的求法,是中档题,解题时要认真审题,注意构造法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x-
1
x
,(x≥1)
1
x
-x,(0<x<1)
,当0<a<b且f(a)=f(b)时,则ab的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y+1)2=2,过点(2,3)的直线l与圆相交于A,B两点,且∠ACB=90°,则直线l的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)满足:
①对任意实数m,n都有f(m+n)+f(m-n)=2f(m)f(n);
②对任意m∈R,有f(1+m)=f(1-m);
③f(x)不恒为0,且当x∈(0,1]时,f(x)<1.
(1)求f(0),f(1)的值;
(2)判断f(x)的奇偶性,并给出你的证明;
(3)定义:“若存在非零常数T,使得对函数F(x)定义域中的任意一个x,均有F(x+T)=F(x),则称F(x)为以T为周期的周期函数”.试证明:函数f(x)为周期函数,并求出f(
1
3
)+f(
2
3
)+f(
3
3
)+…+f(
2017
3
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|4-3x|-5≤0的解集是(  )
A、{x|-
1
3
<x<3}
B、{x|x≤-
1
3
或x≥3}
C、{x|
1
3
≤x≤-3}
D、{x|-
1
3
≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2ax+2(a为常数)
(1)求函数f(x)的定义域;
(2)若a>0,时证明f(x)在R是增函数;
(3)当a=1时,求函数y=f(x),x∈(-1,3]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2-x+a=0无实根;命题q:关于x的函数y=-ax+1在[-1,+∞)上是减函数.若¬q为真命题,p∨q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列
2
3×1
3
3×2
4
3×3
5
3×4
6
3×5
,…它的一个通项公式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,集合A={x|1≤2x<8},B={x|log2x≥1}.
(Ⅰ)求∁U(A∩B);
(Ⅱ)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.

查看答案和解析>>

同步练习册答案