精英家教网 > 高中数学 > 题目详情
已知不等式
1
x
+
1
y
+
m
x+y
≥0
对任意的正实数x、y恒成立,则实数m的最小值为______.
∵不等式
1
x
+
1
y
+
m
x+y
≥0
对任意的正实数x、y恒成立,
∴不等式(x+y)(
1
x
+
1
y
)≥-m对任意的正实数x、y恒成立
而(x+y)(
1
x
+
1
y
)=2+
y
x
+
x
y
≥4
∴-m≤4即m≥-4
故答案为:-4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•东城区二模)已知不等式组
x+y≤1
x-y≥-1
y≥0
表示的平面区域M,若直线y=kx-3k与平面区域M有公共点,则k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-2:矩阵及其变换
(1)如图,向量
OA
OB
被矩阵M作用后分别变成
OA′
OB′

(Ⅰ)求矩阵M;
(Ⅱ)并求y=sin(x+
π
3
)
在M作用后的函数解析式;
选修4-4:坐标系与参数方程
( 2)在直角坐标系x0y中,直线l的参数方程为
x=3-
2
2
t
y=
5
+
2
2
t
(t为参数),在极坐标系(与直角坐标系x0y取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2
5
sinθ

(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A,B.若点P的坐标为(3,
5
),求|PA|+|PB|.
选修4-5:不等式选讲
(3)已知x,y,z为正实数,且
1
x
+
1
y
+
1
z
=1
,求x+4y+9z的最小值及取得最小值时x,y,z的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式
1
x
+
1
y
+
m
x+y
≥0
对任意的正实数x、y恒成立,则实数m的最小值为
-4
-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式
x+y≤1
x-y≥-1
y≥0
表示的平面区域为M,若直线y=kx-3k与平面区域M有公共点,则k的范围是
[-
1
3
,0]
[-
1
3
,0]

查看答案和解析>>

同步练习册答案