(14分)已知中心在原点,顶点
在
轴上,离心率为
的双曲线经过点
(I)求双曲线的方程(II)动直线
经过
的重心
,与双曲线交于不同的两点
,问是否存在直线
使
平分线段
。试证明你的结论。
科目:高中数学 来源: 题型:
(08年天津卷)(本小题满分14分)
已知中心在原点的双曲线C的一个焦点是
,一条渐近线的方程是
.
(Ⅰ)求双曲线C的方程;
(Ⅱ)若以
为斜率的直线
与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
()(本小题满分14分)已知中心在原点、焦点在x轴的椭圆的离心率为
,且过点(
,
). (Ⅰ)求椭圆E的方程;(Ⅱ)若A,B是椭圆E的左、右顶点,直线
:
(
)与椭圆E交于
、
两点,证明直线
与直线
的交点在垂直于
轴的定直线上,并求出该直线方程.
查看答案和解析>>
科目:高中数学 来源:2011-2012年福建省四地六校高二第二次月考理科数学 题型:解答题
(本小题满分14分)
已知中心在坐标轴原点O的椭圆C经过点A(1,
),且点F(-1,0)为其左焦点.
(I)求椭圆C的离心率;
(II)试判断以AF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年湖北省高三五月适应性考试(三)文科数学试卷(解析版) 题型:解答题
(本小题满分14分)
已知中心在原点,焦点在x轴上的椭圆C的离心率为
,且经过点(-1,
),过点P(2,1)的直线l与椭圆C在第一象限相切于点M.
(1)求椭圆C的方程;
(2)求直线l的方程以及点M的坐标;
(3)是否存在过点P的直线l
与椭圆C相交于不同的两点A,B,满足
·
=
?若存在,求出直线l
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2008年普通高等学校招生全国统一考试理科数学(天津卷) 题型:解答题
(本小题满分14分)
已知中心在原点的双曲线C的一个焦点是
,一条渐近线的方程是
.
(Ⅰ)求双曲线C的方程;
(Ⅱ)若以
为斜率的直线
与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐标轴围成的三角形的面积为
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com