已知椭圆的方程为,点分别为其左、右顶点,点分别为其左、右焦点,以点为圆心,为半径作圆;以点为圆心,为半径作圆;若直线被圆和圆截得的弦长之比为;
(1)求椭圆的离心率;
(2)己知,问是否存在点,使得过点有无数条直线被圆和圆截得的弦长之比为;若存在,请求出所有的点坐标;若不存在,请说明理由.
解:(1)由,得直线的倾斜角为,
则点到直线的距离,
故直线被圆截得的弦长为,
直线被圆截得的弦长为, (3分)
据题意有:,即, (5分)
化简得:,
解得:或,又椭圆的离心率;
故椭圆的离心率为.(7分)
(2)假设存在,设点坐标为,过点的直线为;
当直线的斜率不存在时,直线不能被两圆同时所截;
故可设直线的方程为,
则点到直线的距离,
由(1)有,得=,
故直线被圆截得的弦长为, (9分)
则点到直线的距离,
,故直线被圆截得的弦长为, (11分)
据题意有:,即有,整理得,
即,两边平方整理成关于的一元二次方程得
, (13分)
关于的方程有无穷多解,
故有:,
故所求点坐标为(-1,0)或(-49,0). (16分)
(注设过P点的直线为后求得P点坐标同样得分)
解析
科目:高中数学 来源: 题型:解答题
P为椭圆+=1上任意一点,F1、F2为左、右焦点,如图所示.
(1)若PF1的中点为M,求证:|MO|=5-|PF1|;
(2)若∠F1PF2=60°,求|PF1|·|PF2|之值;
(3)椭圆上是否存在点P,使·=0,若存在,求出P点的坐标, 若不存在,试说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)在平面直角坐标系中,的两个顶点的坐标分别为,平面内两点同时满足一下条件:①;②;③
(1)求的顶点的轨迹方程;
(2)过点的直线与(1)中的轨迹交于两点,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(15分)已知椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点组成一个等边三角形,
(1)求椭圆的离心率;
(2)若焦点到同侧顶点的距离为,求椭圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com