(本题满分14分)已知+=1的焦点F1、F2,在直线l:x+y-6=0上找一点M,求以F1、F2为焦点,通过点M且长轴最短的椭圆方程.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线、的斜率分别为、,证明;
(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点为,过焦点且不平行于轴的动直线交抛物线于,两点,抛物线在、两点处的切线交于点.
(Ⅰ)求证:,,三点的横坐标成等差数列;
(Ⅱ)设直线交该抛物线于,两点,求四边形面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点B恰好是抛物线的焦点,
离心率等于.直线与椭圆C交于两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ) 椭圆C的右焦点是否可以为的垂心?若可以,求出直线的方程;
若不可以,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知点是圆上任意一点,点与点关于原点对称。线段的中垂线分别与交于两点.
(1)求点的轨迹的方程;
(2)斜率为的直线与曲线交于两点,若(为坐标原点),试求直线在轴上截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的方程为,点分别为其左、右顶点,点分别为其左、右焦点,以点为圆心,为半径作圆;以点为圆心,为半径作圆;若直线被圆和圆截得的弦长之比为;
(1)求椭圆的离心率;
(2)己知,问是否存在点,使得过点有无数条直线被圆和圆截得的弦长之比为;若存在,请求出所有的点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
根据我国汽车制造的现实情况,一般卡车高3 m,宽1.6 m.现要设计横断面为抛物线型的双向二车道的公路隧道,为保障双向行驶安全,交通管理规定汽车进入隧道后必须保持距中线0.4 m的距离行驶.已知拱口AB宽恰好是拱高OC的4倍,若拱宽为a m,求能使卡车安全通过的a的最小整数值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com