已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点B恰好是抛物线
的焦点,
离心率等于
.直线
与椭圆C交于
两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ) 椭圆C的右焦点
是否可以为
的垂心?若可以,求出直线
的方程;
若不可以,请说明理由.
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知椭圆
的离心率为
,其中左焦点F(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,
求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
的左、右焦点分别为
,上顶点为
,离心率为
,在
轴负半轴上有一点
,且![]()
![]()
(Ⅰ)若过
三点的圆恰好与直线
相切,求椭圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,过右焦点
作斜率为
的直线
与椭圆C交于
两点,在
轴上是否存在点
,使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线![]()
和直线
没有公共点(其中
、
为常数),动点
是直线
上的任意一点,过
点引抛物线
的两条切线,切点分别为
、
,且直线
恒过点
.
(1)求抛物线
的方程;
(2)已知
点为原点,连结
交抛物线
于
、
两点,
证明:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
P为椭圆
+
=1上任意一点,F1、F2为左、右焦点,如图所示.
(1)若PF1的中点为M,求证:|MO|=5-
|PF1|;
(2)若∠F1PF2=60°,求|PF1|·|PF2|之值;
(3)椭圆上是否存在点P,使
·
=0,若存在,求出P点的坐标, 若不存在,试说明理由![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(15分)已知椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点组成一个等边三角形,
(1)求椭圆的离心率;
(2)若焦点到同侧顶点的距离为
,求椭圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com