已知抛物线![]()
和直线
没有公共点(其中
、
为常数),动点
是直线
上的任意一点,过
点引抛物线
的两条切线,切点分别为
、
,且直线
恒过点
.
(1)求抛物线
的方程;
(2)已知
点为原点,连结
交抛物线
于
、
两点,
证明:![]()
科目:高中数学 来源: 题型:解答题
(本题满分14分)
已知椭圆C:
(a>b>0)的离心率为
,短轴一个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:x2+y2=b2的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆E:
(a,b>0)过M(2,
) ,N(
,1)两点,O为坐标原点,
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且
?若存在,写出该圆的方程,若不存在说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点B恰好是抛物线
的焦点,
离心率等于
.直线
与椭圆C交于
两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ) 椭圆C的右焦点
是否可以为
的垂心?若可以,求出直线
的方程;
若不可以,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
在极坐标系中,以极点为坐标原点,极轴为x轴正半轴,建立直角坐标系,点M(2,
)的直角坐标是( )
| A.(2,1) | B.( | C.(1, | D.(1,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com