科目:高中数学 来源: 题型:解答题
(13分)已知抛物线D的顶点是椭圆
的中心,焦点与该椭圆的右焦点重合。
(1)求抛物线D的方程;
(2)已知动直线l过点P(4,0),交抛物线D于A,B两点
(i)若直线l的斜率为1,求AB的长;
(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程,如果不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆O:
,点O为坐标原点,一条直线
:
与圆O相切并与椭圆
交于不同的两点A、B
(1)设
,求
的表达式;
(2)若
,求直线
的方程;
(3)若
,求三角形OAB面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线![]()
和直线
没有公共点(其中
、
为常数),动点
是直线
上的任意一点,过
点引抛物线
的两条切线,切点分别为
、
,且直线
恒过点
.
(1)求抛物线
的方程;
(2)已知
点为原点,连结
交抛物线
于
、
两点,
证明:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
P为椭圆
+
=1上任意一点,F1、F2为左、右焦点,如图所示.
(1)若PF1的中点为M,求证:|MO|=5-
|PF1|;
(2)若∠F1PF2=60°,求|PF1|·|PF2|之值;
(3)椭圆上是否存在点P,使
·
=0,若存在,求出P点的坐标, 若不存在,试说明理由![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的长轴长为2a,焦点是F1(-
,0)、F2(
,0),点F1到直线x=-
的距离为
,过点F2且倾斜角为锐角的直线l与椭圆交于A、B两点,使得|F2B|=3|F2A|.
(1)求椭圆的方程;
(2)求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
21.(本小题满分14分)
已知直线
过抛物线
的焦点
且与抛物线相交于两点
,自
向准线
作垂线,垂足分别为
.
(1)求抛物线
的方程;
(2)证明:无论
取何实数时,
,
都是定值;
(3)记
的面积分别为
,试判断
是否成立,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com