科目:高中数学 来源: 题型:解答题
(13分)已知抛物线D的顶点是椭圆的中心,焦点与该椭圆的右焦点重合。
(1)求抛物线D的方程;
(2)已知动直线l过点P(4,0),交抛物线D于A,B两点
(i)若直线l的斜率为1,求AB的长;
(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程,如果不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆O:,点O为坐标原点,一条直线:与圆O相切并与椭圆交于不同的两点A、B
(1)设,求的表达式;
(2)若,求直线的方程;
(3)若,求三角形OAB面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线和直线没有公共点(其中、为常数),动点是直线上的任意一点,过点引抛物线的两条切线,切点分别为、,且直线恒过点.
(1)求抛物线的方程;
(2)已知点为原点,连结交抛物线于、两点,
证明:
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
P为椭圆+=1上任意一点,F1、F2为左、右焦点,如图所示.
(1)若PF1的中点为M,求证:|MO|=5-|PF1|;
(2)若∠F1PF2=60°,求|PF1|·|PF2|之值;
(3)椭圆上是否存在点P,使·=0,若存在,求出P点的坐标, 若不存在,试说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的长轴长为2a,焦点是F1(-,0)、F2(,0),点F1到直线x=-的距离为,过点F2且倾斜角为锐角的直线l与椭圆交于A、B两点,使得|F2B|=3|F2A|.
(1)求椭圆的方程;
(2)求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
21.(本小题满分14分)
已知直线过抛物线的焦点且与抛物线相交于两点,自向准线作垂线,垂足分别为 .
(1)求抛物线的方程;
(2)证明:无论取何实数时,,都是定值;
(3)记的面积分别为,试判断是否成立,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com