(13分)已知抛物线D的顶点是椭圆
的中心,焦点与该椭圆的右焦点重合。
(1)求抛物线D的方程;
(2)已知动直线l过点P(4,0),交抛物线D于A,B两点
(i)若直线l的斜率为1,求AB的长;
(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程,如果不存在,说明理由。
科目:高中数学 来源: 题型:解答题
已知圆O:
交
轴于A,B两点,曲线C是以
为长轴,离心率为
的椭圆,其左焦点为F.若P是圆O上一点连结PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.![]()
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆
相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
已知椭圆C:
(a>b>0)的离心率为
,短轴一个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:x2+y2=b2的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)设椭圆![]()
的右焦点为
,直线
与
轴交于点
,若
(其中
为坐标原点).
(1)求椭圆
的方程;
(2)设
是椭圆
上的任意一点,
为圆
的任意一条直径(
、
为直径的两个端点),求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分15分)已知椭圆
经过点
,其离心率为
.
(1) 求椭圆
的方程;
(2)设直线
与椭圆
相交于
两点,以线段
为邻边作平行四边形
,其中顶点
在椭圆
上,
为坐标原点.求
到直线
的距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com