(本小题满分15分)已知椭圆
经过点
,其离心率为
.
(1) 求椭圆
的方程;
(2)设直线
与椭圆
相交于
两点,以线段
为邻边作平行四边形
,其中顶点
在椭圆
上,
为坐标原点.求
到直线
的距离的最小值.
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知椭圆
的离心率为
,其中左焦点F(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,
求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分)已知抛物线D的顶点是椭圆
的中心,焦点与该椭圆的右焦点重合。
(1)求抛物线D的方程;
(2)已知动直线l过点P(4,0),交抛物线D于A,B两点
(i)若直线l的斜率为1,求AB的长;
(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程,如果不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
的左、右焦点分别为
,上顶点为
,离心率为
,在
轴负半轴上有一点
,且![]()
![]()
(Ⅰ)若过
三点的圆恰好与直线
相切,求椭圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,过右焦点
作斜率为
的直线
与椭圆C交于
两点,在
轴上是否存在点
,使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
P为椭圆
+
=1上任意一点,F1、F2为左、右焦点,如图所示.
(1)若PF1的中点为M,求证:|MO|=5-
|PF1|;
(2)若∠F1PF2=60°,求|PF1|·|PF2|之值;
(3)椭圆上是否存在点P,使
·
=0,若存在,求出P点的坐标, 若不存在,试说明理由![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
.
(1)若椭圆的长轴长为4,离心率为
,求椭圆的标准方程;
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,
且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com