已知椭圆
的一个焦点是
,且截直线
所得弦长为
,求该椭圆的方程.
科目:高中数学 来源: 题型:解答题
(本题满分12分)
在直角坐标系
中,点
到两点
,
的距离之和等于
,设点
的轨迹为
。
(1)求曲线
的方程;
(2)过点
作两条互相垂直的直线
分别与曲线
交于
和
。
①以线段
为直径的圆过能否过坐标原点,若能求出此时的
值,若不能说明理由;
②求四边形
面积的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知抛物线
的顶点为坐标原点,焦点在
轴上. 且经过点
,
(1)求抛物线
的方程;
(2)若动直线
过点
,交抛物线
于
两点,是否存在垂直于
轴的直线
被以
为直径的圆截得的弦长为定值?若存在,求出
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题16分)在平面直角坐标系
中,
是抛物线
的焦点,
是抛物线
上位于第一象限内的任意一点,过
三点的圆的圆心为
,点
到抛物线
的准线的距离为
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)是否存在点
,使得直线
与抛物线
相切于点
?若存在,求出点
的坐标;若不存在,说明理由;
(Ⅲ)若点
的横坐标为
,直线
与抛物线
有两个不同的交点
,
与圆
有两个不同的交点
,求当
时,
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)在平面直角坐标系
中,已知椭圆
:
(
)的左焦点为
,且点
在
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知直线
的斜率为2且经过椭圆
的左焦点.求直线
与该椭圆
相交的弦长。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分) 已知椭圆E:
=1(a>b>o)的离心率e=
,且经过点(
,1),O为坐标原点。![]()
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆![]()
的离心率为
,定点
,椭圆短轴的端点是
,
,且
.
(1)求椭圆
的方程;
(2)设过点
且斜率不为
的直线交椭圆
于
,
两点.试问
轴上是否存在定点
,使
平分
?若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分15分)已知椭圆
经过点
,其离心率为
.
(1) 求椭圆
的方程;
(2)设直线
与椭圆
相交于
两点,以线段
为邻边作平行四边形
,其中顶点
在椭圆
上,
为坐标原点.求
到直线
的距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com