精英家教网 > 高中数学 > 题目详情

(本题16分)在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.
(Ⅰ)求抛物线的方程;
(Ⅱ)是否存在点,使得直线与抛物线相切于点?若存在,求出点的坐标;若不存在,说明理由;
(Ⅲ)若点的横坐标为,直线与抛物线有两个不同的交点与圆有两个不同的交点,求当时,的最小值.

(1),(2)存在,(3) 最小值

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆)的短轴长与焦距相等,且过定点,倾斜角为的直线交椭圆两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)确定直线轴上截距的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点,又知直线与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若,求实数k值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,已知椭圆(a>b>0)的离心率,过点 和的直线与原点的距离为

(1)求椭圆的方程;
(2)已知定点,若直线与椭圆交于两   点.问:是否存在的值,
使以为直径的圆过点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点.
(1)求椭圆的方程;
(2)求的取值范围;
(3)若直线不过点,求证:直线轴围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)(文科)已知曲线的离心率,直线两点,原点的距离是.
(Ⅰ)求双曲线的方程;
(Ⅱ)过点作直线交双曲线于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个焦点是,且截直线所得弦长为,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)已知双曲线的右焦点与抛物线的焦点重合,求该双曲线的焦点到其渐近线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知椭圆的离心率为,其中左焦点F(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,
求m的值.  

查看答案和解析>>

同步练习册答案