(本题16分)在平面直角坐标系
中,
是抛物线
的焦点,
是抛物线
上位于第一象限内的任意一点,过
三点的圆的圆心为
,点
到抛物线
的准线的距离为
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)是否存在点
,使得直线
与抛物线
相切于点
?若存在,求出点
的坐标;若不存在,说明理由;
(Ⅲ)若点
的横坐标为
,直线
与抛物线
有两个不同的交点
,
与圆
有两个不同的交点
,求当
时,
的最小值.
科目:高中数学 来源: 题型:解答题
已知双曲线C的中心在原点,抛物线
的焦点是双曲线C的一个焦点,且双曲线经过点
,又知直线
与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若
,求实数k值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)如图,已知椭圆
(a>b>0)的离心率
,过点
和
的直线与原点的距离为
.![]()
(1)求椭圆的方程;
(2)已知定点
,若直线
与椭圆交于
、
两 点.问:是否存在
的值,
使以
为直径的圆过
点?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆的中心在原点,焦点在
轴上,离心率为
,且经过点
,直线
交椭圆于不同的两点
.
(1)求椭圆的方程;
(2)求
的取值范围;
(3)若直线
不过点
,求证:直线
与
轴围成一个等腰三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)(文科)已知曲线![]()
的离心率
,直线
过
、
两点,原点
到
的距离是
.
(Ⅰ)求双曲线的方程;
(Ⅱ)过点
作直线
交双曲线于
两点,若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知椭圆
的离心率为
,其中左焦点F(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,
求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com