(本小题满分13分)设椭圆的右焦点为,直线与轴交于点,若(其中为坐标原点).
(1)求椭圆的方程;
(2)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值.
科目:高中数学 来源: 题型:解答题
(本小题满分12分) 已知圆过椭圆的两焦点,与椭圆有且仅有两个公共点;直线与圆相切 ,与椭圆相交于两点记
(1)求椭圆的方程;
(2)求的取值范围;
(3)求的面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆的左右焦点分别为、,短轴两个端点为、,且四边形是边长为2的正方形。
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点;证明:为定值;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分)已知抛物线D的顶点是椭圆的中心,焦点与该椭圆的右焦点重合。
(1)求抛物线D的方程;
(2)已知动直线l过点P(4,0),交抛物线D于A,B两点
(i)若直线l的斜率为1,求AB的长;
(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程,如果不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题12分)
已知椭圆,斜率为的直线交椭圆于两点,且点在直线的上方,
(1)求直线与轴交点的横坐标的取值范围;
(2)证明:的内切圆的圆心在一条直线上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com