(本小题满分13分)设椭圆![]()
的右焦点为
,直线
与
轴交于点
,若
(其中
为坐标原点).
(1)求椭圆
的方程;
(2)设
是椭圆
上的任意一点,
为圆
的任意一条直径(
、
为直径的两个端点),求
的最大值.
科目:高中数学 来源: 题型:解答题
(本小题满分12分) 已知圆
过椭圆
的两焦点,与椭圆有且仅有两个公共点;直线
与圆
相切 ,与椭圆
相交于
两点记![]()
(1)求椭圆的方程;
(2)求
的取值范围;
(3)求
的面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆
的左右焦点分别为
、
,短轴两个端点为
、
,且四边形
是边长为2的正方形。
(1)求椭圆方程;
(2)若
分别是椭圆长轴的左右端点,动点
满足
,连接
,交椭圆于点
;证明:
为定值;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分)已知抛物线D的顶点是椭圆
的中心,焦点与该椭圆的右焦点重合。
(1)求抛物线D的方程;
(2)已知动直线l过点P(4,0),交抛物线D于A,B两点
(i)若直线l的斜率为1,求AB的长;
(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程,如果不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题12分)
已知椭圆
,斜率为
的直线
交椭圆
于
两点,且点
在直线
的上方,
(1)求直线
与
轴交点的横坐标
的取值范围;
(2)证明:
的内切圆的圆心在一条直线上. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com