精英家教网 > 高中数学 > 题目详情

若抛物线的顶点在原点,其准线方程过双曲线-=1(,)的一个焦点,如果抛物线与双曲线交于(,),(,-),求两曲线的标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(Ⅰ)已知双曲线C与双曲线有相同的渐近线,且一条准线为,求双曲线C的方程;
(Ⅱ)已知圆截轴所得弦长为6,圆心在直线上,并与轴相切,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分) 如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且MD=PD.

(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆O:轴于AB两点,曲线C是以为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点连结PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q

(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆相切;
(3)试探究:当点P在圆O上运动时(不与AB重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知椭圆C:(a>b>0)的离心率为,短轴一个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:x2+y2=b2的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)设椭圆的右焦点为,直线轴交于点,若(其中为坐标原点).
(1)求椭圆的方程;
(2)设是椭圆上的任意一点,为圆的任意一条直径(为直径的两个端点),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若抛物线y2=-2px(p>0)上有一点M,其横坐标为-9.它到焦点的距离为10,求抛物线方程和M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

标准方程下的椭圆的短轴长为,焦点,右准线轴相交于点,且,过点的直线和椭圆相交于点.
(1)求椭圆的方程和离心率;
(2)若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(18分)已知椭圆C:,在曲线C上是否存在不同两点A、B关于直线(m为常数)对称?若存在,求出满足的条件;若不存在,说明理由。

查看答案和解析>>

同步练习册答案