精英家教网 > 高中数学 > 题目详情

已知圆O:轴于AB两点,曲线C是以为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点连结PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q

(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆相切;
(3)试探究:当点P在圆O上运动时(不与AB重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.

解:(1)椭圆的标准方程为
(2)因为(1,1),所以,所以,所以直线OQ的方程为y=-2x
又椭圆的左准线方程为x=-2,所以点Q(,4)
所以,又,所以,即,故直线与圆相切
(3)当点在圆上运动时,直线与圆保持相切          

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的中点在原点且过点,焦点在坐标轴上,长轴长是短轴长的3倍,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,椭圆的离心率为,直线所围成的矩形ABCD的面积为8.
 
(Ⅰ)求椭圆M的标准方程;
(Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率,A,B分别为椭圆的长轴和短轴的端点,M为AB的中点,O为坐标原点,且.
(1)求椭圆的方程;
(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知圆过椭圆的两焦点,与椭圆有且仅有两个公共点;直线与圆相切 ,与椭圆相交于两点记
(1)求椭圆的方程;
(2)求的取值范围;
(3)求的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 求满足下列条件的椭圆的标准方程.
(1)焦点在坐标轴上,且经过两点
(2)经过点(2,-3)且与椭圆具有共同的焦点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)已知抛物线D的顶点是椭圆的中心,焦点与该椭圆的右焦点重合。
(1)求抛物线D的方程;
(2)已知动直线l过点P(4,0),交抛物线D于A,B两点
(i)若直线l的斜率为1,求AB的长;
(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程,如果不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆O:,点O为坐标原点,一条直线与圆O相切并与椭圆交于不同的两点A、B
(1)设,求的表达式;
(2)若,求直线的方程;
(3)若,求三角形OAB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若抛物线的顶点在原点,其准线方程过双曲线-=1(,)的一个焦点,如果抛物线与双曲线交于(,),(,-),求两曲线的标准方程.

查看答案和解析>>

同步练习册答案