精英家教网 > 高中数学 > 题目详情

(本小题满分12分) 已知圆过椭圆的两焦点,与椭圆有且仅有两个公共点;直线与圆相切 ,与椭圆相交于两点记
(1)求椭圆的方程;
(2)求的取值范围;
(3)求的面积S的取值范围.

(1);(2);(3)

解析试题分析:
(1)根据题意可知因为圆与椭圆有且只有两个公共点,那么联立方程组,则得到的方程仅有两个实根可得b的值,然后分析2c=2,得到c=1,从而得到椭圆方程。
(2)结合已知的条件,直线与圆相切 ,可知m与k点的关系式,而直线与椭圆相交于两点,那么联立直线方程与椭圆的方程组,结合韦达定理得到,从而化简得到其为,结合的范围得到结论。
(3)根据弦长公式,那么可知结论为,那么结合上一问的k的范围得到面积的范围。
解:(1)由题意知2c="2,c=1," 因为圆与椭圆有且只有两个公共点,从而b=1.故a=
所求椭圆方程为        ﹍﹍﹍﹍﹍﹍﹍3分
(2)因为直线l:y=kx+m与圆相切
所以原点O到直线l的距离=1,即:m  ﹍﹍﹍﹍﹍﹍﹍5分
又由 ,(  
设A(),B(),则    ﹍﹍﹍﹍﹍﹍7分

,由,故, 即 ﹍﹍﹍﹍﹍﹍9分    
(3)
,由,得:        ﹍﹍﹍﹍﹍﹍﹍11分
,所以:               ﹍﹍﹍﹍﹍﹍﹍12分
考点:本试题主要是考查了圆与椭圆的位置关系,以及直线与圆的位置关系,和直线与椭圆的相交弦长的公式的运用。
点评:解决该试题的关键是确定出参数b的值,以及结合已知中2c=2的值,得到椭圆的方程该试题的突破口。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

点A、B分别是以双曲线的焦点为顶点,顶点为焦点的椭圆C长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆C上,且位于x轴上方, 
(1)求椭圆C的的方程;
(2)求点P的坐标;
(3)设M是椭圆长轴AB上的一点,点M到直线AP的距离等于|MB|,求椭圆上的点到M的距离d的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知抛物线C:过点A
(1)求抛物线C 的方程;
(2)直线过定点,斜率为,当取何值时,直线与抛物线C只有一个公共点。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分) 如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且MD=PD.

(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C:为抛物线上一点,关于轴对称的点,为坐标原点.(1)若,求点的坐标;
(2)若过满足(1)中的点作直线交抛物线两点, 且斜率分别为,且,求证:直线过定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆O:轴于AB两点,曲线C是以为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点连结PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q

(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆相切;
(3)试探究:当点P在圆O上运动时(不与AB重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)设椭圆的右焦点为,直线轴交于点,若(其中为坐标原点).
(1)求椭圆的方程;
(2)设是椭圆上的任意一点,为圆的任意一条直径(为直径的两个端点),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)在直角坐标系中椭圆的左、右焦点分别为.其中也是抛物线的焦点,点在第一象限的交点,且.
(1)求的方程;(6分)
(2)平面上的点满足,直线,且与交于两点,若,求直线的方程. (8分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

标准方程下的椭圆的短轴长为,焦点,右准线轴相交于点,且,过点的直线和椭圆相交于点.
(1)求椭圆的方程和离心率;
(2)若,求直线的方程.

查看答案和解析>>

同步练习册答案