(本小题满分12分)如图,椭圆
的离心率为
,直线
和
所围成的矩形ABCD的面积为8.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ) 设直线
与椭圆M有两个不同的交点
与矩形ABCD有两个不同的交点
.求
的最大值及取得最大值时m的值.
(I)
.(II)
时,
取得最大值
.
解析试题分析:(1)根据已知中的离心率和矩形的面积得到a,b,c的方程,进而求解椭圆方程。
(2)将已知中的直线方程与椭圆方程联立方程组,结合韦达定理得到根与系数的关系,那么得到弦长公式,同时以及得到点S,T的坐标,进而得到比值。
(I)
……①
矩形ABCD面积为8,即
……②
由①②解得:
, ∴椭圆M的标准方程是
.
(II)
,
设
,则
,
当
.
当
时,有
,
,
其中
,由此知当
,即
时,
取得最大值
.
考点:本试题主要考查了椭圆方程的求解以及直线与椭圆位置关系的综合运用。
点评:解决该试题的关键是运用代数的方法来解决解析几何问题时,解析几何的本质。能结合椭圆的性质得到其方程,并联立方程组,结合韦达定理和判别式的到比值。
科目:高中数学 来源: 题型:解答题
已知椭圆G:
的右焦点F为
,G上的点到点F的最大距离为
,斜率为1的直线
与椭圆G交与
、
两点,以AB为底边作等腰三角形,顶点为P(-3,2)
(1)求椭圆G的方程;
(2)求
的面积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(Ⅰ)已知双曲线C与双曲线
有相同的渐近线,且一条准线为
,求双曲线C的方程;
(Ⅱ)已知圆截
轴所得弦长为6,圆心在直线
上,并与
轴相切,求该圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分) 已知椭圆E:
=1(a>b>o)的离心率e=
,且经过点(
,1),O为坐标原点。![]()
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分) 如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且MD=
PD.![]()
(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程;
(Ⅱ)求过点(3,0)且斜率为
的直线被C所截线段的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆O:
交
轴于A,B两点,曲线C是以
为长轴,离心率为
的椭圆,其左焦点为F.若P是圆O上一点连结PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.![]()
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆
相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com