已知椭圆G:的右焦点F为,G上的点到点F的最大距离为,斜率为1的直线与椭圆G交与、两点,以AB为底边作等腰三角形,顶点为P(-3,2)
(1)求椭圆G的方程;
(2)求的面积。
科目:高中数学 来源: 题型:解答题
(本题满分14分)
已知椭圆的中心在坐标原点,长轴长为,离心率,过右焦点的直线交
椭圆于,两点:
(Ⅰ)求椭圆的方程;(Ⅱ)当直线的斜率为1时,求的面积;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
解答题(本题共10分.请写出文字说明, 证明过程或演算步骤):
已知是椭圆上一点,,是椭圆的两焦点,且满足
(Ⅰ)求椭圆方程;
(Ⅱ)设、是椭圆上任两点,且直线、的斜率分别为、,若存在常数使,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆C的中心在原点,焦点在轴上,左右焦点分别为,且,
点(1,)在椭圆C上.
(1)求椭圆C的方程;
(2)过的直线与椭圆相交于两点,且的面积为,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)抛物线的顶点在坐标原点,焦点在轴的负半轴上,过点作直线与抛物线交于A,B两点,且满足,
(1)求抛物线的方程
(2)当抛物线上的一动点P从A运动到B时,求面积的的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题12分) 将圆O: 上各点的纵坐标变为原来的一半 (横坐标不变), 得到曲线、抛物线的焦点是直线y=x-1与x轴的交点.
(1)求,的标准方程;
(2)请问是否存在直线满足条件:① 过的焦点;②与交于不同两
点,,且满足?若存在,求出直线的方程; 若不存在,说明
理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,椭圆的离心率为,直线和所围成的矩形ABCD的面积为8.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com