(本题满分14分)
已知椭圆的中心在坐标原点,长轴长为,离心率,过右焦点的直线交
椭圆于,两点:
(Ⅰ)求椭圆的方程;(Ⅱ)当直线的斜率为1时,求的面积;
科目:高中数学 来源: 题型:解答题
在中,两个定点,的垂心H(三角形三条高线的交点)是AB边上高线CD的中点。
(1)求动点C的轨迹方程;
(2)斜率为2的直线交动点C的轨迹于P、Q两点,求面积的最大值(O是坐标原点)。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍,且经过点(2,1),平行于直线在轴上的截距为,设直线交椭圆于两个不同点、,
(1)求椭圆方程;
(2)求证:对任意的的允许值,的内心在定直线。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)已知抛物线上一动点,抛物线内一点,为焦点且的最小值为。
求抛物线方程以及使得|PA|+|PF|最小时的P点坐标;
过(1)中的P点作两条互相垂直的直线与抛物线分别交于C、D两点,直线CD是否过一定点? 若是,求出该定点坐标; 若不是,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设、分别是圆和椭圆的弦,且弦的端点在轴的异侧,端点与、与的横坐标分别相等,纵坐标分别同号.
(Ⅰ)若弦所在直线斜率为,且弦的中点的横坐标为,求直线的方程;
(Ⅱ)若弦过定点,试探究弦是否也必过某个定点. 若有,请证明;若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)
椭圆:的左、右顶点分别、,椭圆过点且离心率.
(1)求椭圆的标准方程;
(2)过椭圆上异于、两点的任意一点作轴,为垂足,延长到点,且,过点作直线轴,连结并延长交直线于点,线段的中点记为点.
①求点所在曲线的方程;
②试判断直线与以为直径的圆的位置关系, 并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆,离心率为的椭圆经过点.
(1)求该椭圆的标准方程;
(2)过椭圆的一个焦点且互相垂直的直线分别与椭圆交于和,是否存在常数,使得?若存在,求出实数的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆G:的右焦点F为,G上的点到点F的最大距离为,斜率为1的直线与椭圆G交与、两点,以AB为底边作等腰三角形,顶点为P(-3,2)
(1)求椭圆G的方程;
(2)求的面积。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com