如图,设、分别是圆和椭圆的弦,且弦的端点在轴的异侧,端点与、与的横坐标分别相等,纵坐标分别同号.
(Ⅰ)若弦所在直线斜率为,且弦的中点的横坐标为,求直线的方程;
(Ⅱ)若弦过定点,试探究弦是否也必过某个定点. 若有,请证明;若没有,请说明理由.
(Ⅰ);(Ⅱ)弦必过定点.
解析试题分析:(Ⅰ)由题意得:直线的方程为
,,设
,将代入检验符合题意,
故满足题意的直线方程为:
(Ⅱ)解法一:由(Ⅰ)得:圆的方程为:分
设、、、,
∵点在圆上, ∴,………①
∵点在椭圆上, ∴,………②
联立方程①②解得:,同理解得:
∴、 ∵弦过定点,
∴且,即,
化简得
直线的方程为:,即,
由得直线的方程为:,
∴弦必过定点.
解法二:由(Ⅰ)得:圆的方程为:
设、,
∵圆上的每一点横坐标不变,纵坐标缩短为原来的倍可得到椭圆,
又端点与、与的横坐标分别相等,纵坐标分别同号,
∴、
由弦过定点,猜想弦过定点.
∵弦过定点,∴且,即……① ,,
由①得,
∴弦必过定点.
考点:本题主要考查直线、圆、椭圆等基础知识的综合应用。
点评:本题以直线、圆、椭圆为载体,综合考查推理论证能力、数形结合思想、化归与转化思想、函数与方程思想.
科目:高中数学 来源: 题型:解答题
已知抛物线C关于轴对称,它的顶点在坐标原点,并且经过点
(1)求抛物线C的标准方程
(2)直线过抛物线的焦点F,与抛物线交于A、B两点,线段AB的中点M的横坐标为3,求弦长以及直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为.
(1)求椭圆的方程。
(2)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.
(1)求实数b的值;
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)设椭圆:的左、右焦点分别为,上顶点为,过点与垂直的直线交轴负半轴于点,且.
(1)求椭圆的离心率; (2)若过、、三点的圆恰好与直线:相切,
求椭圆的方程;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
已知椭圆的中心在坐标原点,长轴长为,离心率,过右焦点的直线交
椭圆于,两点:
(Ⅰ)求椭圆的方程;(Ⅱ)当直线的斜率为1时,求的面积;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线的离心率,过的直线到原点的距离是
(1)求双曲线的方程;
(2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)抛物线的顶点在坐标原点,焦点在轴的负半轴上,过点作直线与抛物线交于A,B两点,且满足,
(1)求抛物线的方程
(2)当抛物线上的一动点P从A运动到B时,求面积的的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com