(本小题满分13分)已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为.
(1)求椭圆的方程。
(2)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。
科目:高中数学 来源: 题型:解答题
已知椭圆的两焦点是F1(0,-1),F2(0,1),离心率e=
(1)求椭圆方程;
(2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,-1)共线.
(1)求椭圆的离心率;
(2)设M为椭圆上任意一点,且(),证明为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)如图所示,椭圆C: 的离心率,左焦点为右焦点为,短轴两个端点为.与轴不垂直的直线与椭圆C交于不同的两点、,记直线、的斜率分别为、,且.
(1)求椭圆 的方程;
(2)求证直线 与轴相交于定点,并求出定点坐标.
(3)当弦 的中点落在内(包括边界)时,求直线的斜率的取值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍,且经过点(2,1),平行于直线在轴上的截距为,设直线交椭圆于两个不同点、,
(1)求椭圆方程;
(2)求证:对任意的的允许值,的内心在定直线。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点.
(I)求椭圆的方程;
(II)直线与椭圆相交于、两点, 为原点,在、上分别存在异于点的点、,使得在以为直径的圆外,求直线斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设、分别是圆和椭圆的弦,且弦的端点在轴的异侧,端点与、与的横坐标分别相等,纵坐标分别同号.
(Ⅰ)若弦所在直线斜率为,且弦的中点的横坐标为,求直线的方程;
(Ⅱ)若弦过定点,试探究弦是否也必过某个定点. 若有,请证明;若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)如图,是椭圆的左、右顶点,椭圆的离心率为,右准线的方程为.
(1)求椭圆方程;
(2)设是椭圆上异于的一点,直线交于点,以为直径的圆记为.
①若恰好是椭圆的上顶点,求截直线所得的弦长;
②设与直线交于点,试证明:直线与轴的交点为定点,并求该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com