已知椭圆的两焦点是F1(0,-1),F2(0,1),离心率e=
(1)求椭圆方程;
(2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知点为抛物线: 的焦点,为抛物线上的点,且.
(Ⅰ)求抛物线的方程和点的坐标;
(Ⅱ)过点引出斜率分别为的两直线,与抛物线的另一交点为,与抛物线的另一交点为,记直线的斜率为.
(ⅰ)若,试求的值;
(ⅱ)证明:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知,,O为坐标原点,动点E满足:
(Ⅰ) 求点E的轨迹C的方程;
(Ⅱ)过曲线C上的动点P向圆O:引两条切线PA、PB,切点分别为A、B,直线AB与x轴、y轴分别交于M、N两点,求ΔMON面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C关于轴对称,它的顶点在坐标原点,并且经过点
(1)求抛物线C的标准方程
(2)直线过抛物线的焦点F,与抛物线交于A、B两点,线段AB的中点M的横坐标为3,求弦长以及直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=.
(Ⅰ)求点S的坐标;
(Ⅱ)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;
①判断直线MN的斜率是否为定值,并说明理由;
②延长NM交轴于点E,若|EM|=|NE|,求cos∠MSN的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知抛物线、椭圆和双曲线都经过点,它们在轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这三条曲线的方程;
(2)对于抛物线上任意一点,点都满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为,为双曲线上一点(不同于),直线,分别与直线交于两点
(1)求双曲线的方程;
(2)是否为定值,若为定值,求出该值;若不为定值,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为.
(1)求椭圆的方程。
(2)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线的离心率,过的直线到原点的距离是
(1)求双曲线的方程;
(2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com