精英家教网 > 高中数学 > 题目详情

(本小题满分13分)
已知抛物线、椭圆和双曲线都经过点,它们在轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这三条曲线的方程;
(2)对于抛物线上任意一点,点都满足,求的取值范围.

(1);(2)

解析试题分析:(1)设抛物线方程为,将代入方程得
-------------------2分
由题意知椭圆、双曲线的焦点为----------------3分
对于椭圆,

所以椭圆方程为----------------5分
对于双曲线,

所以双曲线方程为----------------7分
(2)设------------(8分)
---------------(9分)
恒成立------------------(10分)
----------------(12分)
-----------(13分)
考点:本题主要考查直线与抛物线、椭圆、双曲线的定义及标准方程,二次函数的图象和性质。。
点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题求椭圆、双曲线标准方程时,主要运用了曲线的定义,求抛物线方程则利用了待定系数法。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,已知点是椭圆的右顶点,若点在椭圆上,且满足.(其中为坐标原点)

(1)求椭圆的方程;
(2)若直线与椭圆交于两点,当时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求下列各曲线的标准方程
(Ⅰ)实轴长为12,离心率为,焦点在x轴上的椭圆;
(Ⅱ)抛物线的焦点是双曲线的左顶点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,两个定点的垂心H(三角形三条高线的交点)是AB边上高线CD的中点。
(1)求动点C的轨迹方程;
(2)斜率为2的直线交动点C的轨迹于P、Q两点,求面积的最大值(O是坐标原点)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两焦点是F1(0,-1),F2(0,1),离心率e=
(1)求椭圆方程;
(2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知抛物线C:y2=2px(p>0)的焦点F和椭圆的右焦点重合,直线过点F交抛物线于A、B两点.
(1)求抛物线C的方程;
(2)若直线交y轴于点M,且,m、n是实数,对于直线,m+n是否为定值?若是,求出m+n的值,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,=(3,-1)共线.
(1)求椭圆的离心率;
(2)设M为椭圆上任意一点,且),证明为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍,且经过点(2,1),平行于直线轴上的截距为,设直线交椭圆于两个不同点

(1)求椭圆方程;
(2)求证:对任意的的允许值,的内心在定直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
椭圆:的左、右顶点分别,椭圆过点且离心率.

(1)求椭圆的标准方程;
(2)过椭圆上异于两点的任意一点轴,为垂足,延长到点,且,过点作直线轴,连结并延长交直线于点,线段的中点记为点.
①求点所在曲线的方程;
②试判断直线与以为直径的圆的位置关系, 并证明.

查看答案和解析>>

同步练习册答案