精英家教网 > 高中数学 > 题目详情

求下列各曲线的标准方程
(Ⅰ)实轴长为12,离心率为,焦点在x轴上的椭圆;
(Ⅱ)抛物线的焦点是双曲线的左顶点.

(1) (2)

解析试题分析:解:(Ⅰ)设椭圆的标准方程为  1分
由已知,  3分
  5分
所以椭圆的标准方程为.  6分
(Ⅱ)由已知,双曲线的标准方程为,其左顶点为  7分
设抛物线的标准方程为, 其焦点坐标为,  9分
  即  所以抛物线的标准方程为.  12分
考点:本试题考查了圆锥曲线的方程的求解。
点评:对于椭圆的方程的求解主要是求解参数a,b的值,结合已知中的椭圆的性质得到其关系式,同时利用a,b,c的平方关系来得到结论,对于抛物线的求解,只有一个参数p,因此只要一个点的坐标即可,或者一个性质都可以解决,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆M的中心为坐标原点,且焦点在x轴上,若M的一个顶点恰好是抛物线的焦点,M的离心率,过M的右焦点F作不与坐标轴垂直的直线,交M于A,B两点。
(1)求椭圆M的标准方程;
(2)设点N(t,0)是一个动点,且,求实数t的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)如图,已知抛物线C1: y=x2, 与圆C2: x2+(y+1)2="1," 过y轴上一点A(0, a)(a>0)作圆C2的切线AD,切点为D(x0, y0).

(1)证明:(a+1)(y0+1)=1
(2)若切线AD交抛物线C1于E,且E为AD的中点,求点A纵坐标a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知一条曲线上的点到定点的距离是到定点距离的二倍,求这条曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知,O为坐标原点,动点E满足:

(Ⅰ) 求点E的轨迹C的方程;
(Ⅱ)过曲线C上的动点P向圆O:引两条切线PA、PB,切点分别为A、B,直线AB与x轴、y轴分别交于M、N两点,求ΔMON面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是椭圆的左、右焦点。
(1)若是第一象限内该椭圆上的一点,,求点P的坐标;
(2)设过定点M(0,2)的直线与椭圆交于不同的两点A、B,且为锐角(其中为坐标原点),求直线的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C关于轴对称,它的顶点在坐标原点,并且经过点
(1)求抛物线C的标准方程
(2)直线过抛物线的焦点F,与抛物线交于A、B两点,线段AB的中点M的横坐标为3,求弦长以及直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知抛物线、椭圆和双曲线都经过点,它们在轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这三条曲线的方程;
(2)对于抛物线上任意一点,点都满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.

(1)求实数b的值;
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.

查看答案和解析>>

同步练习册答案