在中,两个定点,的垂心H(三角形三条高线的交点)是AB边上高线CD的中点。
(1)求动点C的轨迹方程;
(2)斜率为2的直线交动点C的轨迹于P、Q两点,求面积的最大值(O是坐标原点)。
科目:高中数学 来源: 题型:解答题
已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.
(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l.求四边形F1MNF2面积S的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知、分别是椭圆的左、右焦点。
(1)若是第一象限内该椭圆上的一点,,求点P的坐标;
(2)设过定点M(0,2)的直线与椭圆交于不同的两点A、B,且为锐角(其中为坐标原点),求直线的斜率的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C关于轴对称,它的顶点在坐标原点,并且经过点
(1)求抛物线C的标准方程
(2)直线过抛物线的焦点F,与抛物线交于A、B两点,线段AB的中点M的横坐标为3,求弦长以及直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,它的准线经过双曲线:的一个焦点且垂直于的两个焦点所在的轴,若抛物线与双曲线的一个交点是.
(1)求抛物线的方程及其焦点的坐标;
(2)求双曲线的方程及其离心率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知抛物线、椭圆和双曲线都经过点,它们在轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这三条曲线的方程;
(2)对于抛物线上任意一点,点都满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分6分.
(理)已知椭圆的一个焦点为,点在椭圆上,点满足(其中为坐标原点),过点作一直线交椭圆于、两点 .
(1)求椭圆的方程;
(2)求面积的最大值;
(3)设点为点关于轴的对称点,判断与的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
已知椭圆的中心在坐标原点,长轴长为,离心率,过右焦点的直线交
椭圆于,两点:
(Ⅰ)求椭圆的方程;(Ⅱ)当直线的斜率为1时,求的面积;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com