精英家教网 > 高中数学 > 题目详情

已知抛物线的顶点在坐标原点,它的准线经过双曲线的一个焦点且垂直于的两个焦点所在的轴,若抛物线与双曲线的一个交点是
(1)求抛物线的方程及其焦点的坐标;
(2)求双曲线的方程及其离心率

(1)。(2)

解析试题分析:(1)由题意可设抛物线的方程为. 把代入方程,得 因此,抛物线的方程为 于是焦点  ……6分
(2)抛物线的准线方程为,所以 ,而双曲线的另一个焦点为,于是   因此,              ……10分
又因为,所以.于是,双曲线的方程为   ……12分
因此双曲线的离心率.       ……14分
考点:本题考查了抛物线与双曲线的定义、方程及性质。
点评:掌握抛物线和双曲线的方程是解决此类问题的关键。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
设椭圆)的两个焦点是),且椭圆与圆有公共点.
(1)求的取值范围;
(2)若椭圆上的点到焦点的最短距离为,求椭圆的方程;
(3)对(2)中的椭圆,直线)与交于不同的两点,若线段的垂直平分线恒过点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动点的距离比它到轴的距离多一个单位.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点作曲线的切线,求切线的方程,并求出与曲线轴所围成图形的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线:的焦点为,是抛物线上异于坐标原点的不同两点,抛物线在点处的切线分别为,且相交于点.

(1) 求点的纵坐标; 
(2) 证明:三点共线;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,两个定点的垂心H(三角形三条高线的交点)是AB边上高线CD的中点。
(1)求动点C的轨迹方程;
(2)斜率为2的直线交动点C的轨迹于P、Q两点,求面积的最大值(O是坐标原点)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点P(4,4),圆C:与椭圆E:有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.

(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知抛物线C:y2=2px(p>0)的焦点F和椭圆的右焦点重合,直线过点F交抛物线于A、B两点.
(1)求抛物线C的方程;
(2)若直线交y轴于点M,且,m、n是实数,对于直线,m+n是否为定值?若是,求出m+n的值,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求过两直线的交点,且满足下列条件的直线的方程.
(Ⅰ)和直线垂直;
(Ⅱ)在轴,轴上的截距相等.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
中心在原点,长半轴长与短半轴长的和为9,离心率为0.6,求椭圆的标准方程。

查看答案和解析>>

同步练习册答案